Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7 a + 4 + \left(10 a + 2\right)\cdot 11 + \left(a + 8\right)\cdot 11^{2} + \left(3 a + 4\right)\cdot 11^{3} + \left(10 a + 8\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 4 + 11 + 2\cdot 11^{2} + 4\cdot 11^{3} + 9\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 9 a + \left(7 a + 5\right)\cdot 11 + \left(4 a + 2\right)\cdot 11^{2} + \left(9 a + 1\right)\cdot 11^{3} + \left(4 a + 7\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 2 a + 3 + \left(3 a + 5\right)\cdot 11 + \left(6 a + 2\right)\cdot 11^{2} + \left(a + 1\right)\cdot 11^{3} + \left(6 a + 6\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 4 a + 10 + 4\cdot 11 + \left(9 a + 5\right)\cdot 11^{2} + \left(7 a + 4\right)\cdot 11^{3} + 2\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 3 + 3\cdot 11 + 11^{2} + 6\cdot 11^{3} + 10\cdot 11^{4} +O\left(11^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,3)(2,4)(5,6)$ |
| $(3,4)$ |
| $(3,4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $6$ |
$2$ |
$(1,3)(2,4)(5,6)$ |
$0$ |
| $6$ |
$2$ |
$(4,6)$ |
$2$ |
| $9$ |
$2$ |
$(2,5)(4,6)$ |
$0$ |
| $4$ |
$3$ |
$(3,4,6)$ |
$1$ |
| $4$ |
$3$ |
$(1,2,5)(3,4,6)$ |
$-2$ |
| $18$ |
$4$ |
$(1,3)(2,4,5,6)$ |
$0$ |
| $12$ |
$6$ |
$(1,3,2,4,5,6)$ |
$0$ |
| $12$ |
$6$ |
$(1,2,5)(4,6)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.