Properties

Label 4.2e8_3e2_13.8t29.1c1
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 2^{8} \cdot 3^{2} \cdot 13 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$29952= 2^{8} \cdot 3^{2} \cdot 13 $
Artin number field: Splitting field of $f= x^{8} - x^{6} - x^{4} + x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Even
Determinant: 1.13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 277 }$ to precision 9.
Roots:
$r_{ 1 }$ $=$ $ 56 + 262\cdot 277 + 255\cdot 277^{2} + 265\cdot 277^{3} + 32\cdot 277^{4} + 33\cdot 277^{5} + 56\cdot 277^{6} + 110\cdot 277^{7} + 6\cdot 277^{8} +O\left(277^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 63 + 31\cdot 277 + 52\cdot 277^{2} + 41\cdot 277^{3} + 214\cdot 277^{4} + 64\cdot 277^{5} + 194\cdot 277^{6} + 70\cdot 277^{7} + 40\cdot 277^{8} +O\left(277^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 65 + 221\cdot 277 + 205\cdot 277^{2} + 260\cdot 277^{3} + 116\cdot 277^{4} + 102\cdot 277^{5} + 235\cdot 277^{6} + 130\cdot 277^{7} + 201\cdot 277^{8} +O\left(277^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 100 + 162\cdot 277 + 225\cdot 277^{2} + 113\cdot 277^{3} + 66\cdot 277^{4} + 70\cdot 277^{5} + 231\cdot 277^{6} + 254\cdot 277^{7} + 180\cdot 277^{8} +O\left(277^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 177 + 114\cdot 277 + 51\cdot 277^{2} + 163\cdot 277^{3} + 210\cdot 277^{4} + 206\cdot 277^{5} + 45\cdot 277^{6} + 22\cdot 277^{7} + 96\cdot 277^{8} +O\left(277^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 212 + 55\cdot 277 + 71\cdot 277^{2} + 16\cdot 277^{3} + 160\cdot 277^{4} + 174\cdot 277^{5} + 41\cdot 277^{6} + 146\cdot 277^{7} + 75\cdot 277^{8} +O\left(277^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 214 + 245\cdot 277 + 224\cdot 277^{2} + 235\cdot 277^{3} + 62\cdot 277^{4} + 212\cdot 277^{5} + 82\cdot 277^{6} + 206\cdot 277^{7} + 236\cdot 277^{8} +O\left(277^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 221 + 14\cdot 277 + 21\cdot 277^{2} + 11\cdot 277^{3} + 244\cdot 277^{4} + 243\cdot 277^{5} + 220\cdot 277^{6} + 166\cdot 277^{7} + 270\cdot 277^{8} +O\left(277^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,8,4)(3,6)$
$(3,6)(4,5)$
$(1,8)(4,5)$
$(1,2)(3,4)(5,6)(7,8)$
$(1,3)(2,5)(4,7)(6,8)$
$(1,8)(2,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$2$$2$$(1,8)(4,5)$$0$
$2$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$4$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$4$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$4$$2$$(1,8)(2,7)$$0$
$4$$2$$(1,5)(2,7)(3,6)(4,8)$$-2$
$4$$2$$(2,6)(3,7)$$2$
$4$$4$$(1,2,8,7)(3,5,6,4)$$0$
$4$$4$$(1,5,8,4)(2,3,7,6)$$0$
$4$$4$$(1,6,8,3)(2,5,7,4)$$0$
$8$$4$$(1,2,4,6)(3,8,7,5)$$0$
$8$$4$$(1,5,8,4)(3,6)$$0$
$8$$4$$(1,2,5,6)(3,8,7,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.