Properties

Label 4.2e8_3_5_17e2.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{8} \cdot 3 \cdot 5 \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$1109760= 2^{8} \cdot 3 \cdot 5 \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 5 x^{4} + 16 x^{3} - x^{2} - 30 x - 9 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd
Determinant: 1.3_5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: $ x^{2} + 103 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 39 a + 5 + \left(73 a + 100\right)\cdot 107 + \left(51 a + 21\right)\cdot 107^{2} + \left(73 a + 25\right)\cdot 107^{3} + \left(20 a + 21\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 37 a + 24 + \left(83 a + 11\right)\cdot 107 + \left(98 a + 8\right)\cdot 107^{2} + \left(92 a + 81\right)\cdot 107^{3} + \left(63 a + 64\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 68 a + 54 + \left(33 a + 33\right)\cdot 107 + \left(55 a + 48\right)\cdot 107^{2} + \left(33 a + 53\right)\cdot 107^{3} + \left(86 a + 30\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 + 2\cdot 107 + 100\cdot 107^{2} + 99\cdot 107^{3} + 28\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 49 + 80\cdot 107 + 36\cdot 107^{2} + 28\cdot 107^{3} + 55\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 70 a + 65 + \left(23 a + 93\right)\cdot 107 + \left(8 a + 105\right)\cdot 107^{2} + \left(14 a + 32\right)\cdot 107^{3} + \left(43 a + 13\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,5)$
$(1,2)(3,4)(5,6)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$0$
$6$$2$$(1,3)$$2$
$9$$2$$(1,3)(2,4)$$0$
$4$$3$$(1,3,5)(2,4,6)$$-2$
$4$$3$$(2,4,6)$$1$
$18$$4$$(1,4,3,2)(5,6)$$0$
$12$$6$$(1,2,3,4,5,6)$$0$
$12$$6$$(1,3)(2,4,6)$$-1$
The blue line marks the conjugacy class containing complex conjugation.