Properties

Label 4.2e8_3_43.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{8} \cdot 3 \cdot 43 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$33024= 2^{8} \cdot 3 \cdot 43 $
Artin number field: Splitting field of $f= x^{6} - 5 x^{4} - 4 x^{3} - 26 x^{2} + 10 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 65 + \left(29 a + 46\right)\cdot 67 + \left(34 a + 63\right)\cdot 67^{2} + \left(56 a + 63\right)\cdot 67^{3} + \left(25 a + 15\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 a + 30 + \left(22 a + 15\right)\cdot 67 + \left(61 a + 30\right)\cdot 67^{2} + \left(6 a + 63\right)\cdot 67^{3} + \left(36 a + 50\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 45 a + 19 + \left(37 a + 8\right)\cdot 67 + \left(32 a + 38\right)\cdot 67^{2} + \left(10 a + 54\right)\cdot 67^{3} + \left(41 a + 62\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 50 + 11\cdot 67 + 32\cdot 67^{2} + 15\cdot 67^{3} + 55\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 45 a + 51 + \left(44 a + 15\right)\cdot 67 + \left(5 a + 52\right)\cdot 67^{2} + \left(60 a + 29\right)\cdot 67^{3} + \left(30 a + 54\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 53 + 35\cdot 67 + 51\cdot 67^{2} + 40\cdot 67^{3} + 28\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,5)$
$(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,5)(4,6)$ $2$
$6$ $2$ $(1,3)$ $0$
$9$ $2$ $(1,3)(2,5)$ $0$
$4$ $3$ $(1,3,4)(2,5,6)$ $1$
$4$ $3$ $(1,3,4)$ $-2$
$18$ $4$ $(1,5,3,2)(4,6)$ $0$
$12$ $6$ $(1,5,3,6,4,2)$ $-1$
$12$ $6$ $(1,3)(2,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.