Properties

Label 4.2e8_3_31e2.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{8} \cdot 3 \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$738048= 2^{8} \cdot 3 \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{6} - 4 x^{4} - 16 x^{3} - 27 x^{2} + 32 x + 64 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 15 a + 27 + \left(3 a + 36\right)\cdot 43 + \left(22 a + 8\right)\cdot 43^{2} + \left(14 a + 39\right)\cdot 43^{3} + \left(9 a + 38\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 18\cdot 43 + 14\cdot 43^{2} + 6\cdot 43^{3} + 2\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 39 a + 37 + \left(35 a + 13\right)\cdot 43 + \left(9 a + 27\right)\cdot 43^{2} + \left(37 a + 4\right)\cdot 43^{3} + \left(24 a + 5\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 33 + \left(7 a + 10\right)\cdot 43 + \left(33 a + 1\right)\cdot 43^{2} + \left(5 a + 32\right)\cdot 43^{3} + \left(18 a + 35\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 17 + 24\cdot 43 + 6\cdot 43^{2} + 15\cdot 43^{3} + 13\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 28 a + 42 + \left(39 a + 24\right)\cdot 43 + \left(20 a + 27\right)\cdot 43^{2} + \left(28 a + 31\right)\cdot 43^{3} + \left(33 a + 33\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,5)$
$(1,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,5)(4,6)$ $0$
$6$ $2$ $(2,3)$ $2$
$9$ $2$ $(1,5)(2,3)$ $0$
$4$ $3$ $(1,5,6)(2,3,4)$ $-2$
$4$ $3$ $(2,3,4)$ $1$
$18$ $4$ $(1,2,5,3)(4,6)$ $0$
$12$ $6$ $(1,2,5,3,6,4)$ $0$
$12$ $6$ $(1,5,6)(2,3)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.