Properties

Label 4.350464.8t40.b.a
Dimension $4$
Group $Q_8:S_4$
Conductor $350464$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $Q_8:S_4$
Conductor: \(350464\)\(\medspace = 2^{8} \cdot 37^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 8.0.207474688.1
Galois orbit size: $1$
Smallest permutation container: $Q_8:S_4$
Parity: even
Determinant: 1.1.1t1.a.a
Projective image: $C_2^2:S_4$
Projective stem field: Galois closure of 8.4.656825960704.2

Defining polynomial

$f(x)$$=$ \( x^{8} - 2x^{7} + 2x^{6} - 8x^{5} + 12x^{4} - 10x^{3} + 12x^{2} - 4x + 3 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: \( x^{2} + 29x + 3 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 13 a + 13 + \left(8 a + 13\right)\cdot 31 + \left(25 a + 29\right)\cdot 31^{2} + \left(21 a + 19\right)\cdot 31^{3} + \left(17 a + 4\right)\cdot 31^{4} + \left(27 a + 25\right)\cdot 31^{5} + \left(5 a + 12\right)\cdot 31^{6} + \left(2 a + 5\right)\cdot 31^{7} + \left(4 a + 13\right)\cdot 31^{8} + \left(22 a + 18\right)\cdot 31^{9} +O(31^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 26 a + 8 + \left(4 a + 23\right)\cdot 31 + \left(4 a + 19\right)\cdot 31^{2} + \left(23 a + 26\right)\cdot 31^{3} + \left(19 a + 25\right)\cdot 31^{4} + 30\cdot 31^{5} + \left(27 a + 27\right)\cdot 31^{6} + \left(13 a + 8\right)\cdot 31^{7} + 21 a\cdot 31^{8} + \left(24 a + 29\right)\cdot 31^{9} +O(31^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 16 + 8\cdot 31 + 9\cdot 31^{2} + 29\cdot 31^{3} + 29\cdot 31^{4} + 11\cdot 31^{5} + 18\cdot 31^{6} + 7\cdot 31^{7} + 8\cdot 31^{8} + 22\cdot 31^{9} +O(31^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 29 a + 19 + \left(20 a + 7\right)\cdot 31 + \left(13 a + 14\right)\cdot 31^{2} + \left(19 a + 23\right)\cdot 31^{3} + \left(14 a + 28\right)\cdot 31^{4} + \left(9 a + 25\right)\cdot 31^{5} + \left(23 a + 28\right)\cdot 31^{6} + \left(22 a + 24\right)\cdot 31^{7} + \left(30 a + 6\right)\cdot 31^{8} + \left(3 a + 26\right)\cdot 31^{9} +O(31^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 5 a + 29 + \left(26 a + 6\right)\cdot 31 + \left(26 a + 23\right)\cdot 31^{2} + \left(7 a + 6\right)\cdot 31^{3} + \left(11 a + 11\right)\cdot 31^{4} + \left(30 a + 12\right)\cdot 31^{5} + \left(3 a + 19\right)\cdot 31^{6} + \left(17 a + 9\right)\cdot 31^{7} + \left(9 a + 29\right)\cdot 31^{8} + \left(6 a + 25\right)\cdot 31^{9} +O(31^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 18 a + 8 + \left(22 a + 17\right)\cdot 31 + \left(5 a + 9\right)\cdot 31^{2} + \left(9 a + 7\right)\cdot 31^{3} + \left(13 a + 18\right)\cdot 31^{4} + 3 a\cdot 31^{5} + \left(25 a + 28\right)\cdot 31^{6} + \left(28 a + 3\right)\cdot 31^{7} + \left(26 a + 19\right)\cdot 31^{8} + \left(8 a + 27\right)\cdot 31^{9} +O(31^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 2 a + 15 + \left(10 a + 20\right)\cdot 31 + \left(17 a + 20\right)\cdot 31^{2} + \left(11 a + 17\right)\cdot 31^{3} + \left(16 a + 7\right)\cdot 31^{4} + \left(21 a + 30\right)\cdot 31^{5} + \left(7 a + 3\right)\cdot 31^{6} + \left(8 a + 16\right)\cdot 31^{7} + 14\cdot 31^{8} + \left(27 a + 3\right)\cdot 31^{9} +O(31^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 18 + 26\cdot 31 + 28\cdot 31^{2} + 23\cdot 31^{3} + 28\cdot 31^{4} + 17\cdot 31^{5} + 15\cdot 31^{6} + 16\cdot 31^{7} + 31^{8} + 2\cdot 31^{9} +O(31^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,6)(3,4)(5,7)$
$(2,6,3)(5,7,8)$
$(1,5,6,3,4,2,7,8)$
$(2,7,8)(3,5,6)$
$(1,4)(2,3,6,5,8,7)$
$(3,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$1$$2$$(1,4)(2,5)(3,8)(6,7)$$-4$
$6$$2$$(3,8)(6,7)$$0$
$12$$2$$(1,8)(2,6)(3,4)(5,7)$$0$
$24$$2$$(1,7)(2,5)(4,6)$$0$
$32$$3$$(2,6,8)(3,5,7)$$1$
$6$$4$$(1,6,4,7)(2,8,5,3)$$0$
$6$$4$$(1,5,4,2)(3,7,8,6)$$0$
$12$$4$$(1,6,4,7)(2,5)(3,8)$$-2$
$12$$4$$(1,8,4,3)$$2$
$32$$6$$(1,4)(2,3,6,5,8,7)$$-1$
$24$$8$$(1,5,6,3,4,2,7,8)$$0$
$24$$8$$(1,8,5,6,4,3,2,7)$$0$