Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 25.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 25 a + 44 + \left(18 a + 24\right)\cdot 53 + 27 a\cdot 53^{2} + \left(5 a + 4\right)\cdot 53^{3} + \left(41 a + 26\right)\cdot 53^{4} + \left(2 a + 28\right)\cdot 53^{5} + \left(6 a + 50\right)\cdot 53^{6} + \left(18 a + 30\right)\cdot 53^{7} + \left(21 a + 16\right)\cdot 53^{8} + \left(28 a + 7\right)\cdot 53^{9} + \left(10 a + 48\right)\cdot 53^{10} + \left(21 a + 31\right)\cdot 53^{11} + \left(3 a + 44\right)\cdot 53^{12} + \left(29 a + 27\right)\cdot 53^{13} + \left(3 a + 40\right)\cdot 53^{14} + \left(50 a + 22\right)\cdot 53^{15} + \left(11 a + 15\right)\cdot 53^{16} + \left(9 a + 28\right)\cdot 53^{17} + \left(34 a + 23\right)\cdot 53^{18} + \left(27 a + 11\right)\cdot 53^{19} + \left(23 a + 15\right)\cdot 53^{20} + \left(43 a + 36\right)\cdot 53^{21} + \left(17 a + 21\right)\cdot 53^{22} + \left(52 a + 50\right)\cdot 53^{23} + \left(38 a + 36\right)\cdot 53^{24} +O\left(53^{ 25 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 7 a + 21 + \left(45 a + 49\right)\cdot 53 + \left(28 a + 35\right)\cdot 53^{2} + \left(30 a + 14\right)\cdot 53^{3} + \left(6 a + 34\right)\cdot 53^{4} + \left(32 a + 13\right)\cdot 53^{5} + \left(22 a + 16\right)\cdot 53^{6} + \left(17 a + 48\right)\cdot 53^{7} + \left(15 a + 8\right)\cdot 53^{8} + \left(9 a + 37\right)\cdot 53^{9} + \left(26 a + 15\right)\cdot 53^{10} + \left(31 a + 35\right)\cdot 53^{11} + \left(50 a + 23\right)\cdot 53^{12} + \left(a + 28\right)\cdot 53^{13} + \left(52 a + 5\right)\cdot 53^{14} + \left(a + 52\right)\cdot 53^{15} + \left(12 a + 40\right)\cdot 53^{16} + \left(50 a + 8\right)\cdot 53^{17} + \left(23 a + 21\right)\cdot 53^{18} + 17 a\cdot 53^{19} + \left(12 a + 45\right)\cdot 53^{20} + \left(28 a + 16\right)\cdot 53^{21} + \left(51 a + 42\right)\cdot 53^{22} + \left(22 a + 5\right)\cdot 53^{23} + \left(25 a + 48\right)\cdot 53^{24} +O\left(53^{ 25 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 42 a + 23 + \left(4 a + 4\right)\cdot 53 + \left(28 a + 11\right)\cdot 53^{2} + \left(38 a + 25\right)\cdot 53^{3} + \left(46 a + 50\right)\cdot 53^{4} + \left(11 a + 2\right)\cdot 53^{5} + \left(40 a + 39\right)\cdot 53^{6} + \left(36 a + 21\right)\cdot 53^{7} + \left(31 a + 27\right)\cdot 53^{8} + \left(21 a + 37\right)\cdot 53^{9} + \left(13 a + 37\right)\cdot 53^{10} + \left(29 a + 29\right)\cdot 53^{11} + \left(22 a + 26\right)\cdot 53^{12} + \left(34 a + 4\right)\cdot 53^{13} + \left(41 a + 34\right)\cdot 53^{14} + \left(12 a + 51\right)\cdot 53^{15} + \left(18 a + 47\right)\cdot 53^{16} + \left(38 a + 48\right)\cdot 53^{17} + \left(34 a + 17\right)\cdot 53^{18} + \left(30 a + 37\right)\cdot 53^{19} + \left(12 a + 51\right)\cdot 53^{20} + \left(27 a + 27\right)\cdot 53^{21} + \left(34 a + 34\right)\cdot 53^{22} + \left(39 a + 16\right)\cdot 53^{23} + \left(24 a + 3\right)\cdot 53^{24} +O\left(53^{ 25 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 19 + 49\cdot 53 + 22\cdot 53^{2} + 26\cdot 53^{3} + 14\cdot 53^{4} + 29\cdot 53^{5} + 6\cdot 53^{6} + 14\cdot 53^{7} + 41\cdot 53^{8} + 10\cdot 53^{9} + 36\cdot 53^{10} + 22\cdot 53^{11} + 19\cdot 53^{12} + 16\cdot 53^{13} + 22\cdot 53^{14} + 2\cdot 53^{15} + 43\cdot 53^{16} + 16\cdot 53^{17} + 35\cdot 53^{18} + 35\cdot 53^{19} + 16\cdot 53^{20} + 42\cdot 53^{21} + 38\cdot 53^{22} + 4\cdot 53^{23} + 27\cdot 53^{24} +O\left(53^{ 25 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 46 a + 49 + \left(7 a + 10\right)\cdot 53 + 24 a\cdot 53^{2} + \left(22 a + 2\right)\cdot 53^{3} + \left(46 a + 30\right)\cdot 53^{4} + \left(20 a + 29\right)\cdot 53^{5} + \left(30 a + 21\right)\cdot 53^{6} + \left(35 a + 42\right)\cdot 53^{7} + \left(37 a + 52\right)\cdot 53^{8} + \left(43 a + 5\right)\cdot 53^{9} + \left(26 a + 5\right)\cdot 53^{10} + \left(21 a + 29\right)\cdot 53^{11} + \left(2 a + 35\right)\cdot 53^{12} + \left(51 a + 38\right)\cdot 53^{13} + 52\cdot 53^{14} + \left(51 a + 7\right)\cdot 53^{15} + \left(40 a + 34\right)\cdot 53^{16} + \left(2 a + 38\right)\cdot 53^{17} + \left(29 a + 13\right)\cdot 53^{18} + \left(35 a + 46\right)\cdot 53^{19} + \left(40 a + 23\right)\cdot 53^{20} + \left(24 a + 11\right)\cdot 53^{21} + \left(a + 8\right)\cdot 53^{22} + \left(30 a + 46\right)\cdot 53^{23} + \left(27 a + 20\right)\cdot 53^{24} +O\left(53^{ 25 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 11 a + 32 + \left(48 a + 34\right)\cdot 53 + \left(24 a + 12\right)\cdot 53^{2} + \left(14 a + 45\right)\cdot 53^{3} + \left(6 a + 39\right)\cdot 53^{4} + \left(41 a + 3\right)\cdot 53^{5} + \left(12 a + 29\right)\cdot 53^{6} + \left(16 a + 22\right)\cdot 53^{7} + \left(21 a + 11\right)\cdot 53^{8} + \left(31 a + 39\right)\cdot 53^{9} + \left(39 a + 16\right)\cdot 53^{10} + \left(23 a + 27\right)\cdot 53^{11} + \left(30 a + 34\right)\cdot 53^{12} + \left(18 a + 13\right)\cdot 53^{13} + \left(11 a + 7\right)\cdot 53^{14} + \left(40 a + 8\right)\cdot 53^{15} + \left(34 a + 2\right)\cdot 53^{16} + \left(14 a + 25\right)\cdot 53^{17} + \left(18 a + 12\right)\cdot 53^{18} + \left(22 a + 19\right)\cdot 53^{19} + \left(40 a + 18\right)\cdot 53^{20} + \left(25 a + 18\right)\cdot 53^{21} + \left(18 a + 39\right)\cdot 53^{22} + \left(13 a + 34\right)\cdot 53^{23} + \left(28 a + 9\right)\cdot 53^{24} +O\left(53^{ 25 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 41 + 17\cdot 53 + 37\cdot 53^{2} + 42\cdot 53^{3} + 43\cdot 53^{4} + 52\cdot 53^{5} + 29\cdot 53^{6} + 40\cdot 53^{7} + 22\cdot 53^{8} + 27\cdot 53^{9} + 43\cdot 53^{10} + 35\cdot 53^{11} + 43\cdot 53^{12} + 47\cdot 53^{13} + 23\cdot 53^{14} + 6\cdot 53^{15} + 15\cdot 53^{16} + 45\cdot 53^{17} + 42\cdot 53^{18} + 26\cdot 53^{19} + 12\cdot 53^{20} + 31\cdot 53^{21} + 30\cdot 53^{22} + 23\cdot 53^{23} + 31\cdot 53^{24} +O\left(53^{ 25 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 28 a + 38 + \left(34 a + 20\right)\cdot 53 + \left(25 a + 38\right)\cdot 53^{2} + \left(47 a + 51\right)\cdot 53^{3} + \left(11 a + 25\right)\cdot 53^{4} + \left(50 a + 51\right)\cdot 53^{5} + \left(46 a + 18\right)\cdot 53^{6} + \left(34 a + 44\right)\cdot 53^{7} + \left(31 a + 30\right)\cdot 53^{8} + \left(24 a + 46\right)\cdot 53^{9} + \left(42 a + 8\right)\cdot 53^{10} + 31 a\cdot 53^{11} + \left(49 a + 37\right)\cdot 53^{12} + \left(23 a + 34\right)\cdot 53^{13} + \left(49 a + 25\right)\cdot 53^{14} + \left(2 a + 7\right)\cdot 53^{15} + \left(41 a + 13\right)\cdot 53^{16} + 43 a\cdot 53^{17} + \left(18 a + 45\right)\cdot 53^{18} + \left(25 a + 34\right)\cdot 53^{19} + \left(29 a + 28\right)\cdot 53^{20} + \left(9 a + 27\right)\cdot 53^{21} + \left(35 a + 49\right)\cdot 53^{22} + 29\cdot 53^{23} + \left(14 a + 34\right)\cdot 53^{24} +O\left(53^{ 25 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,6)(4,7)$ |
| $(3,5)(4,7)$ |
| $(2,4)(3,5)(6,7)$ |
| $(2,3,4)(5,7,6)$ |
| $(1,5,8,3)(2,4,6,7)$ |
| $(1,4,3)(5,8,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,8)(2,6)(3,5)(4,7)$ | $-4$ |
| $6$ | $2$ | $(2,6)(4,7)$ | $0$ |
| $12$ | $2$ | $(1,4)(2,3)(5,6)(7,8)$ | $0$ |
| $24$ | $2$ | $(1,6)(2,8)(4,7)$ | $0$ |
| $32$ | $3$ | $(2,3,4)(5,7,6)$ | $1$ |
| $6$ | $4$ | $(1,5,8,3)(2,4,6,7)$ | $0$ |
| $6$ | $4$ | $(1,2,8,6)(3,7,5,4)$ | $0$ |
| $12$ | $4$ | $(1,5,8,3)$ | $-2$ |
| $12$ | $4$ | $(1,8)(2,4,6,7)(3,5)$ | $2$ |
| $32$ | $6$ | $(1,3,2,8,5,6)(4,7)$ | $-1$ |
| $24$ | $8$ | $(1,7,6,5,8,4,2,3)$ | $0$ |
| $24$ | $8$ | $(1,5,4,6,8,3,7,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.