Properties

Label 4.2e8_31e4.8t26.3c1
Dimension 4
Group $(C_4^2 : C_2):C_2$
Conductor $ 2^{8} \cdot 31^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_4^2 : C_2):C_2$
Conductor:$236421376= 2^{8} \cdot 31^{4} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{6} + x^{4} - 8 x^{3} - 2 x^{2} - 4 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_4^2 : C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 617 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 3 + 603\cdot 617 + 352\cdot 617^{2} + 6\cdot 617^{3} + 227\cdot 617^{4} + 126\cdot 617^{5} + 427\cdot 617^{6} + 464\cdot 617^{7} +O\left(617^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 112 + 426\cdot 617 + 571\cdot 617^{2} + 28\cdot 617^{3} + 340\cdot 617^{4} + 262\cdot 617^{5} + 14\cdot 617^{6} + 512\cdot 617^{7} +O\left(617^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 147 + 176\cdot 617 + 432\cdot 617^{2} + 217\cdot 617^{3} + 424\cdot 617^{4} + 112\cdot 617^{5} + 497\cdot 617^{6} + 349\cdot 617^{7} +O\left(617^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 174 + 459\cdot 617 + 269\cdot 617^{2} + 199\cdot 617^{3} + 594\cdot 617^{4} + 528\cdot 617^{5} + 539\cdot 617^{6} + 156\cdot 617^{7} +O\left(617^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 184 + 172\cdot 617 + 577\cdot 617^{2} + 170\cdot 617^{3} + 492\cdot 617^{4} + 329\cdot 617^{5} + 182\cdot 617^{6} + 215\cdot 617^{7} +O\left(617^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 318 + 32\cdot 617 + 349\cdot 617^{2} + 410\cdot 617^{3} + 174\cdot 617^{4} + 515\cdot 617^{5} + 609\cdot 617^{6} + 41\cdot 617^{7} +O\left(617^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 345 + 499\cdot 617 + 58\cdot 617^{2} + 199\cdot 617^{3} + 437\cdot 617^{4} + 561\cdot 617^{5} + 7\cdot 617^{6} + 226\cdot 617^{7} +O\left(617^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 568 + 98\cdot 617 + 473\cdot 617^{2} + 395\cdot 617^{4} + 30\cdot 617^{5} + 189\cdot 617^{6} + 501\cdot 617^{7} +O\left(617^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,5)(3,4)$
$(1,8,4,5,6,7,3,2)$
$(1,3,6,4)(2,8,5,7)$
$(1,6)(7,8)$
$(2,5)(7,8)$
$(1,2,6,5)(3,7,4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,6)(2,5)(3,4)(7,8)$$-4$
$2$$2$$(2,5)(7,8)$$0$
$4$$2$$(2,5)(3,4)$$0$
$4$$2$$(1,4)(2,8)(3,6)(5,7)$$0$
$4$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$4$$2$$(1,2)(3,7)(4,8)(5,6)$$0$
$8$$2$$(2,7)(3,4)(5,8)$$0$
$2$$4$$(1,4,6,3)(2,8,5,7)$$0$
$2$$4$$(1,3,6,4)(2,8,5,7)$$0$
$4$$4$$(1,2,6,5)(3,7,4,8)$$0$
$4$$4$$(1,5,6,2)(3,7,4,8)$$0$
$4$$4$$(2,7,5,8)$$-2$
$4$$4$$(1,4,6,3)(2,5)(7,8)$$2$
$8$$8$$(1,8,4,5,6,7,3,2)$$0$
$8$$8$$(1,8,4,2,6,7,3,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.