Properties

Label 4.2e8_269e3.12t34.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{8} \cdot 269^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$4983067904= 2^{8} \cdot 269^{3} $
Artin number field: Splitting field of $f= x^{6} - 19 x^{4} - 4 x^{3} + 23 x^{2} + 38 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.269.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + 46 + \left(8 a + 56\right)\cdot 61 + \left(19 a + 31\right)\cdot 61^{2} + \left(37 a + 28\right)\cdot 61^{3} + \left(53 a + 22\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 + 8\cdot 61 + 47\cdot 61^{2} + 46\cdot 61^{3} + 60\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 32 + \left(31 a + 5\right)\cdot 61 + \left(23 a + 10\right)\cdot 61^{2} + \left(30 a + 26\right)\cdot 61^{3} + \left(55 a + 14\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 49 + 27\cdot 61 + 48\cdot 61^{2} + 61^{3} + 7\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 53 a + 54 + \left(52 a + 56\right)\cdot 61 + \left(41 a + 42\right)\cdot 61^{2} + \left(23 a + 46\right)\cdot 61^{3} + \left(7 a + 38\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 52 a + 41 + \left(29 a + 27\right)\cdot 61 + \left(37 a + 2\right)\cdot 61^{2} + \left(30 a + 33\right)\cdot 61^{3} + \left(5 a + 39\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(3,4)$
$(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$-2$
$6$$2$$(3,4)$$0$
$9$$2$$(1,2)(3,4)$$0$
$4$$3$$(1,2,5)(3,4,6)$$1$
$4$$3$$(1,2,5)$$-2$
$18$$4$$(1,3,2,4)(5,6)$$0$
$12$$6$$(1,4,2,6,5,3)$$1$
$12$$6$$(1,2,5)(3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.