Properties

Label 4.2e8_23e2.8t23.2c1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{8} \cdot 23^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$135424= 2^{8} \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{8} - 5 x^{6} + 6 x^{4} + 3 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 11 a + 18 + \left(18 a + 7\right)\cdot 31 + \left(13 a + 29\right)\cdot 31^{2} + \left(14 a + 1\right)\cdot 31^{3} + \left(12 a + 24\right)\cdot 31^{4} + \left(21 a + 19\right)\cdot 31^{5} + 19 a\cdot 31^{6} + \left(8 a + 13\right)\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 26 + 29\cdot 31 + 2\cdot 31^{2} + 26\cdot 31^{4} + 14\cdot 31^{5} + 14\cdot 31^{6} + 11\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 19 + \left(25 a + 11\right)\cdot 31 + \left(28 a + 30\right)\cdot 31^{2} + 28 a\cdot 31^{3} + \left(5 a + 24\right)\cdot 31^{4} + \left(20 a + 13\right)\cdot 31^{5} + \left(8 a + 1\right)\cdot 31^{6} + \left(15 a + 20\right)\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 9 + \left(12 a + 2\right)\cdot 31 + \left(17 a + 7\right)\cdot 31^{2} + \left(16 a + 17\right)\cdot 31^{3} + \left(18 a + 3\right)\cdot 31^{4} + \left(9 a + 19\right)\cdot 31^{5} + \left(11 a + 18\right)\cdot 31^{6} + \left(22 a + 10\right)\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 20 a + 13 + \left(12 a + 23\right)\cdot 31 + \left(17 a + 1\right)\cdot 31^{2} + \left(16 a + 29\right)\cdot 31^{3} + \left(18 a + 6\right)\cdot 31^{4} + \left(9 a + 11\right)\cdot 31^{5} + \left(11 a + 30\right)\cdot 31^{6} + \left(22 a + 17\right)\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 5 + 31 + 28\cdot 31^{2} + 30\cdot 31^{3} + 4\cdot 31^{4} + 16\cdot 31^{5} + 16\cdot 31^{6} + 19\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 19 a + 12 + \left(5 a + 19\right)\cdot 31 + 2 a\cdot 31^{2} + \left(2 a + 30\right)\cdot 31^{3} + \left(25 a + 6\right)\cdot 31^{4} + \left(10 a + 17\right)\cdot 31^{5} + \left(22 a + 29\right)\cdot 31^{6} + \left(15 a + 10\right)\cdot 31^{7} +O\left(31^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 11 a + 22 + \left(18 a + 28\right)\cdot 31 + \left(13 a + 23\right)\cdot 31^{2} + \left(14 a + 13\right)\cdot 31^{3} + \left(12 a + 27\right)\cdot 31^{4} + \left(21 a + 11\right)\cdot 31^{5} + \left(19 a + 12\right)\cdot 31^{6} + \left(8 a + 20\right)\cdot 31^{7} +O\left(31^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,8)(3,4,5)$
$(1,6,5,2)(3,8,7,4)$
$(1,8,5,4)(2,7,6,3)$
$(1,3)(4,8)(5,7)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-4$
$12$$2$$(1,3)(4,8)(5,7)$$0$
$8$$3$$(2,8,3)(4,7,6)$$1$
$6$$4$$(1,8,5,4)(2,7,6,3)$$0$
$8$$6$$(1,3,8,5,7,4)(2,6)$$-1$
$6$$8$$(1,2,7,4,5,6,3,8)$$0$
$6$$8$$(1,6,7,8,5,2,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.