Properties

Label 4.2e8_23e2.6t9.1
Dimension 4
Group $S_3^2$
Conductor $ 2^{8} \cdot 23^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$135424= 2^{8} \cdot 23^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} + 4 x^{3} - 8 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 12\cdot 31 + 25\cdot 31^{2} + 30\cdot 31^{3} + 31^{4} + 30\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 7 + \left(15 a + 12\right)\cdot 31 + \left(10 a + 8\right)\cdot 31^{2} + \left(4 a + 4\right)\cdot 31^{3} + \left(17 a + 18\right)\cdot 31^{4} + \left(2 a + 6\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 13 + 24\cdot 31 + 5\cdot 31^{2} + 11\cdot 31^{3} + 3\cdot 31^{4} + 21\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 14 a + 20 + \left(27 a + 2\right)\cdot 31 + \left(20 a + 28\right)\cdot 31^{2} + \left(23 a + 8\right)\cdot 31^{3} + \left(9 a + 28\right)\cdot 31^{4} + \left(6 a + 18\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 17 + \left(3 a + 12\right)\cdot 31 + \left(10 a + 11\right)\cdot 31^{2} + \left(7 a + 4\right)\cdot 31^{3} + \left(21 a + 24\right)\cdot 31^{4} + \left(24 a + 21\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 4 + \left(15 a + 29\right)\cdot 31 + \left(20 a + 13\right)\cdot 31^{2} + \left(26 a + 2\right)\cdot 31^{3} + \left(13 a + 17\right)\cdot 31^{4} + \left(28 a + 25\right)\cdot 31^{5} +O\left(31^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,6)$
$(2,6)(4,5)$
$(3,6)(4,5)$
$(1,4,5)$
$(1,2,5,3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$3$ $2$ $(1,3)(2,4)(5,6)$ $0$
$3$ $2$ $(1,6)(2,4)(3,5)$ $0$
$9$ $2$ $(3,6)(4,5)$ $0$
$2$ $3$ $(1,5,4)(2,3,6)$ $-2$
$2$ $3$ $(1,5,4)(2,6,3)$ $-2$
$4$ $3$ $(1,4,5)$ $1$
$6$ $6$ $(1,2,5,3,4,6)$ $0$
$6$ $6$ $(1,2,5,6,4,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.