Properties

Label 4.2e8_19e2.6t9.1c1
Dimension 4
Group $S_3^2$
Conductor $ 2^{8} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$92416= 2^{8} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{4} - 4 x^{3} + x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 24 a + 24 + \left(29 a + 30\right)\cdot 31 + \left(25 a + 20\right)\cdot 31^{2} + \left(17 a + 25\right)\cdot 31^{3} + 2 a\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 29 + 26\cdot 31 + 28\cdot 31^{2} + 11\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 13 + \left(10 a + 4\right)\cdot 31 + \left(5 a + 12\right)\cdot 31^{2} + \left(30 a + 22\right)\cdot 31^{3} + \left(25 a + 29\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 10 + \left(a + 4\right)\cdot 31 + \left(5 a + 12\right)\cdot 31^{2} + \left(13 a + 4\right)\cdot 31^{3} + \left(28 a + 19\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 14 + 27\cdot 31 + 6\cdot 31^{2} + 24\cdot 31^{3} + 11\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 5 + \left(20 a + 30\right)\cdot 31 + \left(25 a + 11\right)\cdot 31^{2} + 15\cdot 31^{3} + \left(5 a + 20\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(3,5,6)$
$(1,6)(2,5)(3,4)$
$(1,4,2)$
$(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$3$$2$$(1,6)(2,5)(3,4)$$0$
$3$$2$$(1,3)(2,5)(4,6)$$0$
$9$$2$$(2,4)(5,6)$$0$
$2$$3$$(1,4,2)(3,5,6)$$-2$
$2$$3$$(1,4,2)(3,6,5)$$-2$
$4$$3$$(1,4,2)$$1$
$6$$6$$(1,3,4,5,2,6)$$0$
$6$$6$$(1,5,4,3,2,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.