Properties

Label 4.2e8_17e3.8t21.3c1
Dimension 4
Group $C_2^3 : C_4 $
Conductor $ 2^{8} \cdot 17^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3 : C_4 $
Conductor:$1257728= 2^{8} \cdot 17^{3} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 12 x^{5} - 2 x^{4} - 16 x^{3} + 24 x^{2} + 48 x + 20 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even
Determinant: 1.17.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 44 + 74\cdot 149 + 88\cdot 149^{2} + 88\cdot 149^{3} + 11\cdot 149^{4} + 31\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 51 + 123\cdot 149 + 25\cdot 149^{2} + 119\cdot 149^{3} + 9\cdot 149^{4} + 124\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 73 + 7\cdot 149 + 48\cdot 149^{2} + 139\cdot 149^{3} + 126\cdot 149^{4} + 46\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 87 + 104\cdot 149 + 101\cdot 149^{2} + 7\cdot 149^{3} + 14\cdot 149^{4} + 81\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 91 + 103\cdot 149 + 10\cdot 149^{2} + 95\cdot 149^{3} + 72\cdot 149^{4} + 90\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 129 + 139\cdot 149 + 124\cdot 149^{2} + 73\cdot 149^{3} + 137\cdot 149^{4} + 121\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 130 + 71\cdot 149 + 57\cdot 149^{2} + 136\cdot 149^{3} + 99\cdot 149^{4} + 132\cdot 149^{5} +O\left(149^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 142 + 119\cdot 149 + 138\cdot 149^{2} + 84\cdot 149^{3} + 123\cdot 149^{4} + 116\cdot 149^{5} +O\left(149^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,3)(5,7)(6,8)$
$(5,8)(6,7)$
$(1,7)(2,6)(3,5)(4,8)$
$(1,2)(3,4)(5,8)(6,7)$
$(1,6,4,8)(2,7,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,4)(5,8)(6,7)$$-4$
$2$$2$$(1,4)(2,3)(5,7)(6,8)$$0$
$2$$2$$(5,8)(6,7)$$0$
$2$$2$$(1,4)(2,3)(5,6)(7,8)$$0$
$4$$2$$(1,7)(2,6)(3,5)(4,8)$$0$
$4$$4$$(1,6,4,8)(2,7,3,5)$$0$
$4$$4$$(1,8,4,6)(2,5,3,7)$$0$
$4$$4$$(1,8,2,5)(3,6,4,7)$$0$
$4$$4$$(1,2)(5,7,8,6)$$0$
$4$$4$$(1,2)(5,6,8,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.