Properties

Label 4.2e8_17e3.8t21.2
Dimension 4
Group $C_2^3: C_4$
Conductor $ 2^{8} \cdot 17^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2^3: C_4$
Conductor:$1257728= 2^{8} \cdot 17^{3} $
Artin number field: Splitting field of $f= x^{8} - x^{6} - 6 x^{4} + x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2^3: C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 7 + 112\cdot 149 + 21\cdot 149^{2} + 87\cdot 149^{3} + 51\cdot 149^{4} + 95\cdot 149^{5} + 95\cdot 149^{6} +O\left(149^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 12 + 127\cdot 149 + 37\cdot 149^{2} + 134\cdot 149^{3} + 4\cdot 149^{4} + 84\cdot 149^{5} + 32\cdot 149^{6} +O\left(149^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 15 + 17\cdot 149 + 17\cdot 149^{2} + 135\cdot 149^{3} + 148\cdot 149^{4} + 10\cdot 149^{5} + 100\cdot 149^{6} +O\left(149^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 46 + 85\cdot 149 + 57\cdot 149^{2} + 9\cdot 149^{3} + 60\cdot 149^{4} + 116\cdot 149^{5} + 112\cdot 149^{6} +O\left(149^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 103 + 63\cdot 149 + 91\cdot 149^{2} + 139\cdot 149^{3} + 88\cdot 149^{4} + 32\cdot 149^{5} + 36\cdot 149^{6} +O\left(149^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 134 + 131\cdot 149 + 131\cdot 149^{2} + 13\cdot 149^{3} + 138\cdot 149^{5} + 48\cdot 149^{6} +O\left(149^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 137 + 21\cdot 149 + 111\cdot 149^{2} + 14\cdot 149^{3} + 144\cdot 149^{4} + 64\cdot 149^{5} + 116\cdot 149^{6} +O\left(149^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 142 + 36\cdot 149 + 127\cdot 149^{2} + 61\cdot 149^{3} + 97\cdot 149^{4} + 53\cdot 149^{5} + 53\cdot 149^{6} +O\left(149^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(2,7)(4,5)$
$(3,6)(4,5)$
$(1,5,3,7)(2,8,4,6)$
$(1,3,8,6)(2,5,7,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-4$
$2$ $2$ $(1,3)(2,4)(5,7)(6,8)$ $0$
$2$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $0$
$2$ $2$ $(2,7)(4,5)$ $0$
$4$ $2$ $(1,8)(2,7)$ $0$
$4$ $4$ $(1,3,8,6)(2,5,7,4)$ $0$
$4$ $4$ $(1,5,3,7)(2,8,4,6)$ $0$
$4$ $4$ $(1,7,3,5)(2,6,4,8)$ $0$
$4$ $4$ $(1,4,6,2)(3,7,8,5)$ $0$
$4$ $4$ $(1,2,6,4)(3,5,8,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.