Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 457 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 74 + 104\cdot 457 + 69\cdot 457^{2} + 319\cdot 457^{3} + 332\cdot 457^{4} + 204\cdot 457^{5} +O\left(457^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 88 + 47\cdot 457 + 152\cdot 457^{2} + 198\cdot 457^{3} + 236\cdot 457^{4} + 203\cdot 457^{5} +O\left(457^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 103 + 439\cdot 457 + 359\cdot 457^{2} + 290\cdot 457^{3} + 202\cdot 457^{4} + 231\cdot 457^{5} +O\left(457^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 146 + 418\cdot 457 + 14\cdot 457^{2} + 198\cdot 457^{3} + 65\cdot 457^{4} + 182\cdot 457^{5} +O\left(457^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 296 + 345\cdot 457 + 342\cdot 457^{2} + 350\cdot 457^{3} + 193\cdot 457^{4} + 155\cdot 457^{5} +O\left(457^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 352 + 400\cdot 457 + 139\cdot 457^{2} + 302\cdot 457^{3} + 139\cdot 457^{4} + 294\cdot 457^{5} +O\left(457^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 385 + 102\cdot 457 + 404\cdot 457^{2} + 166\cdot 457^{3} + 418\cdot 457^{4} + 372\cdot 457^{5} +O\left(457^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 386 + 426\cdot 457 + 344\cdot 457^{2} + 457^{3} + 239\cdot 457^{4} + 183\cdot 457^{5} +O\left(457^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,7,8,5,6,4,3,2)$ |
| $(1,2,6,5)(3,7,8,4)$ |
| $(1,7)(2,8)(3,5)(4,6)$ |
| $(1,6)(2,5)$ |
| $(2,5)(4,7)$ |
| $(3,8)(4,7)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $1$ | $2$ | $(1,6)(2,5)(3,8)(4,7)$ | $-4$ |
| $2$ | $2$ | $(2,5)(4,7)$ | $0$ |
| $4$ | $2$ | $(1,6)(2,5)$ | $0$ |
| $4$ | $2$ | $(1,2)(3,7)(4,8)(5,6)$ | $0$ |
| $4$ | $2$ | $(1,8)(2,7)(3,6)(4,5)$ | $0$ |
| $4$ | $2$ | $(1,2)(3,4)(5,6)(7,8)$ | $0$ |
| $8$ | $2$ | $(1,3)(2,5)(6,8)$ | $0$ |
| $2$ | $4$ | $(1,8,6,3)(2,7,5,4)$ | $0$ |
| $2$ | $4$ | $(1,8,6,3)(2,4,5,7)$ | $0$ |
| $4$ | $4$ | $(1,2,6,5)(3,7,8,4)$ | $0$ |
| $4$ | $4$ | $(1,6)(2,7,5,4)(3,8)$ | $-2$ |
| $4$ | $4$ | $(1,2,6,5)(3,4,8,7)$ | $0$ |
| $4$ | $4$ | $(1,3,6,8)$ | $2$ |
| $8$ | $8$ | $(1,7,8,5,6,4,3,2)$ | $0$ |
| $8$ | $8$ | $(1,7,3,5,6,4,8,2)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.