Properties

Label 4.2e8_17e2.8t26.1
Dimension 4
Group $(C_4^2 : C_2):C_2$
Conductor $ 2^{8} \cdot 17^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_4^2 : C_2):C_2$
Conductor:$73984= 2^{8} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 4 x^{6} - x^{4} + 4 x^{2} - 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_4^2 : C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 457 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 52 + 259\cdot 457 + 207\cdot 457^{2} + 26\cdot 457^{3} + 258\cdot 457^{4} + 4\cdot 457^{5} + 348\cdot 457^{6} + 398\cdot 457^{7} +O\left(457^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 62 + 182\cdot 457 + 213\cdot 457^{2} + 328\cdot 457^{3} + 249\cdot 457^{4} + 275\cdot 457^{5} + 411\cdot 457^{6} + 94\cdot 457^{7} +O\left(457^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 143 + 287\cdot 457 + 316\cdot 457^{2} + 78\cdot 457^{3} + 8\cdot 457^{4} + 82\cdot 457^{5} + 202\cdot 457^{6} + 173\cdot 457^{7} +O\left(457^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 153 + 211\cdot 457 + 12\cdot 457^{2} + 320\cdot 457^{3} + 303\cdot 457^{4} + 367\cdot 457^{5} + 371\cdot 457^{6} + 306\cdot 457^{7} +O\left(457^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 167 + 117\cdot 457 + 262\cdot 457^{2} + 32\cdot 457^{3} + 376\cdot 457^{4} + 390\cdot 457^{5} + 26\cdot 457^{6} + 403\cdot 457^{7} +O\left(457^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 230 + 438\cdot 457 + 123\cdot 457^{2} + 305\cdot 457^{3} + 251\cdot 457^{4} + 249\cdot 457^{5} + 353\cdot 457^{6} + 316\cdot 457^{7} +O\left(457^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 258 + 75\cdot 457 + 329\cdot 457^{2} + 180\cdot 457^{3} + 35\cdot 457^{4} + 81\cdot 457^{5} + 71\cdot 457^{6} + 316\cdot 457^{7} +O\left(457^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 310 + 256\cdot 457 + 362\cdot 457^{2} + 98\cdot 457^{3} + 345\cdot 457^{4} + 376\cdot 457^{5} + 42\cdot 457^{6} + 275\cdot 457^{7} +O\left(457^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,5,4)(2,8,7,3)$
$(3,8)(4,6)$
$(2,7)(3,8)$
$(1,5)(4,6)$
$(1,4,2,8,5,6,7,3)$
$(1,3)(2,4)(5,8)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,5)(2,7)(3,8)(4,6)$ $-4$
$2$ $2$ $(1,5)(2,7)$ $0$
$4$ $2$ $(1,5)(4,6)$ $0$
$4$ $2$ $(1,3)(2,4)(5,8)(6,7)$ $0$
$4$ $2$ $(1,2)(3,6)(4,8)(5,7)$ $0$
$4$ $2$ $(1,6)(2,8)(3,7)(4,5)$ $0$
$8$ $2$ $(1,7)(2,5)(3,8)$ $0$
$2$ $4$ $(1,2,5,7)(3,4,8,6)$ $0$
$2$ $4$ $(1,2,5,7)(3,6,8,4)$ $0$
$4$ $4$ $(1,6,5,4)(2,8,7,3)$ $0$
$4$ $4$ $(1,6,5,4)(2,3,7,8)$ $0$
$4$ $4$ $(1,7,5,2)$ $2$
$4$ $4$ $(1,7,5,2)(3,8)(4,6)$ $-2$
$8$ $8$ $(1,4,2,8,5,6,7,3)$ $0$
$8$ $8$ $(1,4,2,3,5,6,7,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.