Properties

Label 4.2e8_13e4.8t16.2c1
Dimension 4
Group $(C_8:C_2):C_2$
Conductor $ 2^{8} \cdot 13^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_8:C_2):C_2$
Conductor:$7311616= 2^{8} \cdot 13^{4} $
Artin number field: Splitting field of $f= x^{8} + 13 x^{4} + 13 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_8:C_2):C_2$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 53 }$ to precision 11.
Roots:
$r_{ 1 }$ $=$ $ 2 + 52\cdot 53 + 45\cdot 53^{2} + 4\cdot 53^{3} + 49\cdot 53^{4} + 50\cdot 53^{5} + 53^{6} + 33\cdot 53^{7} + 29\cdot 53^{8} + 4\cdot 53^{9} + 48\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 6 + 17\cdot 53 + 19\cdot 53^{2} + 47\cdot 53^{3} + 3\cdot 53^{4} + 8\cdot 53^{5} + 2\cdot 53^{6} + 38\cdot 53^{7} + 48\cdot 53^{8} + 20\cdot 53^{9} + 36\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 7 + 4\cdot 53 + 31\cdot 53^{2} + 2\cdot 53^{3} + 19\cdot 53^{4} + 29\cdot 53^{5} + 24\cdot 53^{6} + 12\cdot 53^{7} + 30\cdot 53^{8} + 18\cdot 53^{9} + 48\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 21 + 29\cdot 53 + 44\cdot 53^{2} + 44\cdot 53^{3} + 45\cdot 53^{4} + 47\cdot 53^{5} + 9\cdot 53^{6} + 47\cdot 53^{7} + 14\cdot 53^{8} + 4\cdot 53^{9} + 28\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 32 + 23\cdot 53 + 8\cdot 53^{2} + 8\cdot 53^{3} + 7\cdot 53^{4} + 5\cdot 53^{5} + 43\cdot 53^{6} + 5\cdot 53^{7} + 38\cdot 53^{8} + 48\cdot 53^{9} + 24\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 46 + 48\cdot 53 + 21\cdot 53^{2} + 50\cdot 53^{3} + 33\cdot 53^{4} + 23\cdot 53^{5} + 28\cdot 53^{6} + 40\cdot 53^{7} + 22\cdot 53^{8} + 34\cdot 53^{9} + 4\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 47 + 35\cdot 53 + 33\cdot 53^{2} + 5\cdot 53^{3} + 49\cdot 53^{4} + 44\cdot 53^{5} + 50\cdot 53^{6} + 14\cdot 53^{7} + 4\cdot 53^{8} + 32\cdot 53^{9} + 16\cdot 53^{10} +O\left(53^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 51 + 7\cdot 53^{2} + 48\cdot 53^{3} + 3\cdot 53^{4} + 2\cdot 53^{5} + 51\cdot 53^{6} + 19\cdot 53^{7} + 23\cdot 53^{8} + 48\cdot 53^{9} + 4\cdot 53^{10} +O\left(53^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,3,7,8,5,6,2)$
$(3,6)(4,5)$
$(2,7)(4,5)$
$(1,8)(2,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-4$
$2$$2$$(2,7)(4,5)$$0$
$4$$2$$(3,6)(4,5)$$0$
$4$$2$$(1,6)(2,5)(3,8)(4,7)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
$2$$4$$(1,6,8,3)(2,4,7,5)$$0$
$4$$8$$(1,4,3,7,8,5,6,2)$$0$
$4$$8$$(1,7,6,4,8,2,3,5)$$0$
$4$$8$$(1,4,6,7,8,5,3,2)$$0$
$4$$8$$(1,7,3,4,8,2,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.