Properties

Label 4.2e8_137.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{8} \cdot 137 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$35072= 2^{8} \cdot 137 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 12 x^{4} + 21 x^{2} + 16 x + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 60 + 3\cdot 73 + 65\cdot 73^{2} + 4\cdot 73^{3} + 64\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 72 a + 45 + \left(67 a + 41\right)\cdot 73 + \left(6 a + 27\right)\cdot 73^{2} + \left(16 a + 13\right)\cdot 73^{3} + \left(11 a + 32\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 a + 50 + \left(55 a + 39\right)\cdot 73 + \left(31 a + 4\right)\cdot 73^{2} + \left(16 a + 67\right)\cdot 73^{3} + \left(22 a + 71\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 46 a + 58 + \left(17 a + 32\right)\cdot 73 + \left(41 a + 44\right)\cdot 73^{2} + \left(56 a + 11\right)\cdot 73^{3} + \left(50 a + 49\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 39 + 24\cdot 73^{2} + 67\cdot 73^{3} + 24\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a + 42 + \left(5 a + 27\right)\cdot 73 + \left(66 a + 53\right)\cdot 73^{2} + \left(56 a + 54\right)\cdot 73^{3} + \left(61 a + 49\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(3,4)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,3)(2,4)(5,6)$ $2$
$6$ $2$ $(2,6)$ $0$
$9$ $2$ $(2,6)(4,5)$ $0$
$4$ $3$ $(3,4,5)$ $-2$
$4$ $3$ $(1,2,6)(3,4,5)$ $1$
$18$ $4$ $(1,3)(2,5,6,4)$ $0$
$12$ $6$ $(1,3,2,4,6,5)$ $-1$
$12$ $6$ $(2,6)(3,4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.