Properties

Label 4.2e8_131e2.8t23.2
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{8} \cdot 131^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$4393216= 2^{8} \cdot 131^{2} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 10 x^{6} - 6 x^{5} - 12 x^{4} + 40 x^{3} - 40 x^{2} + 10 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 5 + \left(26 a + 13\right)\cdot 29 + \left(6 a + 25\right)\cdot 29^{2} + \left(27 a + 25\right)\cdot 29^{3} + \left(26 a + 23\right)\cdot 29^{4} + \left(16 a + 16\right)\cdot 29^{5} + \left(27 a + 28\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 8 + 15\cdot 29 + 5\cdot 29^{2} + 13\cdot 29^{4} + 26\cdot 29^{5} + 17\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 3 + 27\cdot 29 + 16\cdot 29^{2} + 4\cdot 29^{3} + 3\cdot 29^{4} + 21\cdot 29^{5} + 18\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 25 + \left(11 a + 25\right)\cdot 29 + \left(23 a + 16\right)\cdot 29^{2} + \left(24 a + 21\right)\cdot 29^{3} + \left(10 a + 10\right)\cdot 29^{4} + \left(4 a + 21\right)\cdot 29^{5} + \left(2 a + 6\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 13 a + 27 + \left(2 a + 13\right)\cdot 29 + \left(22 a + 4\right)\cdot 29^{2} + \left(a + 10\right)\cdot 29^{3} + \left(2 a + 15\right)\cdot 29^{4} + \left(12 a + 16\right)\cdot 29^{5} + \left(a + 4\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 26 a + 11 + \left(2 a + 6\right)\cdot 29 + \left(3 a + 28\right)\cdot 29^{2} + \left(26 a + 17\right)\cdot 29^{3} + \left(12 a + 14\right)\cdot 29^{4} + \left(26 a + 3\right)\cdot 29^{5} + 27 a\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 25 a + 16 + \left(17 a + 19\right)\cdot 29 + \left(5 a + 6\right)\cdot 29^{2} + \left(4 a + 6\right)\cdot 29^{3} + \left(18 a + 11\right)\cdot 29^{4} + \left(24 a + 3\right)\cdot 29^{5} + \left(26 a + 13\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 3 a + 25 + \left(26 a + 23\right)\cdot 29 + \left(25 a + 11\right)\cdot 29^{2} + 2 a\cdot 29^{3} + \left(16 a + 24\right)\cdot 29^{4} + \left(2 a + 6\right)\cdot 29^{5} + \left(a + 26\right)\cdot 29^{6} +O\left(29^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6)(4,5)(7,8)$
$(1,8,5,7)(2,6,3,4)$
$(1,4,8)(5,6,7)$
$(1,5)(2,3)(4,6)(7,8)$
$(1,3,5,2)(4,8,6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,5)(2,3)(4,6)(7,8)$ $-4$
$12$ $2$ $(1,6)(4,5)(7,8)$ $0$
$8$ $3$ $(2,7,4)(3,8,6)$ $1$
$6$ $4$ $(1,8,5,7)(2,6,3,4)$ $0$
$8$ $6$ $(1,8,3,5,7,2)(4,6)$ $-1$
$6$ $8$ $(1,3,4,7,5,2,6,8)$ $0$
$6$ $8$ $(1,2,4,8,5,3,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.