Properties

Label 4.2e6_97e3.12t34.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{6} \cdot 97^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$58411072= 2^{6} \cdot 97^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} + 9 x^{3} - 9 x^{2} - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even
Determinant: 1.97.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 6 + \left(34 a + 22\right)\cdot 47 + \left(38 a + 34\right)\cdot 47^{2} + \left(21 a + 26\right)\cdot 47^{3} + \left(29 a + 30\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 42\cdot 47 + 28\cdot 47^{2} + 35\cdot 47^{3} + 42\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 27 + 39\cdot 47 + 36\cdot 47^{2} + 46\cdot 47^{3} + 32\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 45 a + 36 + \left(45 a + 3\right)\cdot 47 + \left(16 a + 11\right)\cdot 47^{2} + \left(21 a + 34\right)\cdot 47^{3} + \left(43 a + 44\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 32 + \left(a + 3\right)\cdot 47 + \left(30 a + 46\right)\cdot 47^{2} + \left(25 a + 12\right)\cdot 47^{3} + \left(3 a + 16\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 33 a + 34 + \left(12 a + 29\right)\cdot 47 + \left(8 a + 30\right)\cdot 47^{2} + \left(25 a + 31\right)\cdot 47^{3} + \left(17 a + 20\right)\cdot 47^{4} +O\left(47^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)$
$(1,3)(2,4)(5,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$-2$
$6$$2$$(4,5)$$0$
$9$$2$$(2,6)(4,5)$$0$
$4$$3$$(1,2,6)(3,4,5)$$1$
$4$$3$$(3,4,5)$$-2$
$18$$4$$(1,3)(2,4,6,5)$$0$
$12$$6$$(1,3,2,4,6,5)$$1$
$12$$6$$(1,2,6)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.