Properties

Label 4.2e6_953e2.12t36.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{6} \cdot 953^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$58125376= 2^{6} \cdot 953^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 7 x^{4} + 35 x^{3} - 11 x^{2} - 108 x - 56 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ a + 14 + \left(14 a + 10\right)\cdot 17 + \left(10 a + 11\right)\cdot 17^{2} + \left(a + 3\right)\cdot 17^{3} + \left(11 a + 9\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 a + 15 + \left(2 a + 6\right)\cdot 17 + \left(6 a + 8\right)\cdot 17^{2} + \left(15 a + 11\right)\cdot 17^{3} + \left(5 a + 1\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 + 16\cdot 17 + 8\cdot 17^{2} + 9\cdot 17^{3} + 6\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 14 + \left(14 a + 6\right)\cdot 17 + \left(2 a + 1\right)\cdot 17^{2} + \left(2 a + 4\right)\cdot 17^{3} + \left(3 a + 13\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 8 + \left(2 a + 10\right)\cdot 17 + \left(14 a + 6\right)\cdot 17^{2} + \left(14 a + 3\right)\cdot 17^{3} + \left(13 a + 14\right)\cdot 17^{4} +O\left(17^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 6 + 16\cdot 17 + 13\cdot 17^{2} + 17^{3} + 6\cdot 17^{4} +O\left(17^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(3,4)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,3)(2,4)(5,6)$ $0$
$6$ $2$ $(2,6)$ $-2$
$9$ $2$ $(2,6)(4,5)$ $0$
$4$ $3$ $(3,4,5)$ $1$
$4$ $3$ $(1,2,6)(3,4,5)$ $-2$
$18$ $4$ $(1,3)(2,5,6,4)$ $0$
$12$ $6$ $(1,3,2,4,6,5)$ $0$
$12$ $6$ $(2,6)(3,4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.