Properties

Label 4.2e6_929e2.12t36.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{6} \cdot 929^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$55234624= 2^{6} \cdot 929^{2} $
Artin number field: Splitting field of $f= x^{6} - 31 x^{4} - 62 x^{3} + 8 x^{2} + 32 x + 32 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 18 a + 20 + \left(15 a + 27\right)\cdot 29 + \left(a + 13\right)\cdot 29^{2} + 9 a\cdot 29^{3} + \left(20 a + 13\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ a + 20 + \left(6 a + 21\right)\cdot 29 + \left(22 a + 8\right)\cdot 29^{2} + \left(14 a + 1\right)\cdot 29^{3} + \left(11 a + 5\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 + 14\cdot 29 + 22\cdot 29^{2} + 3\cdot 29^{3} + 5\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 23 + 13 a\cdot 29 + \left(27 a + 6\right)\cdot 29^{2} + \left(19 a + 15\right)\cdot 29^{3} + \left(8 a + 18\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 28 a + 25 + \left(22 a + 21\right)\cdot 29 + \left(6 a + 26\right)\cdot 29^{2} + \left(14 a + 23\right)\cdot 29^{3} + \left(17 a + 18\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 15 + 9\cdot 29^{2} + 13\cdot 29^{3} + 26\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)$
$(2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $0$
$6$ $2$ $(2,3)$ $-2$
$9$ $2$ $(1,4)(2,3)$ $0$
$4$ $3$ $(1,4,6)(2,3,5)$ $-2$
$4$ $3$ $(1,4,6)$ $1$
$18$ $4$ $(1,2,4,3)(5,6)$ $0$
$12$ $6$ $(1,3,4,5,6,2)$ $0$
$12$ $6$ $(1,4,6)(2,3)$ $1$
The blue line marks the conjugacy class containing complex conjugation.