Properties

Label 4.2e6_857.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{6} \cdot 857 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$54848= 2^{6} \cdot 857 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - x^{4} + 31 x^{3} - 28 x^{2} - 29 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$: $ x^{2} + 82 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 73 a + 53 + \left(61 a + 1\right)\cdot 83 + \left(18 a + 34\right)\cdot 83^{2} + \left(11 a + 4\right)\cdot 83^{3} + \left(46 a + 30\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 71 + 7\cdot 83 + 58\cdot 83^{2} + 81\cdot 83^{3} + 70\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 19 + 6\cdot 83 + 81\cdot 83^{2} + 10\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 43 + \left(21 a + 73\right)\cdot 83 + \left(64 a + 73\right)\cdot 83^{2} + \left(71 a + 79\right)\cdot 83^{3} + \left(36 a + 64\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 69 a + 81 + \left(23 a + 60\right)\cdot 83 + \left(13 a + 47\right)\cdot 83^{2} + \left(48 a + 23\right)\cdot 83^{3} + \left(36 a + 42\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 67 + \left(59 a + 15\right)\cdot 83 + \left(69 a + 37\right)\cdot 83^{2} + \left(34 a + 58\right)\cdot 83^{3} + \left(46 a + 30\right)\cdot 83^{4} +O\left(83^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)$
$(1,3)(2,5)(4,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,3)(2,5)(4,6)$ $2$
$6$ $2$ $(1,2)$ $0$
$9$ $2$ $(1,2)(3,5)$ $0$
$4$ $3$ $(1,2,4)(3,5,6)$ $1$
$4$ $3$ $(3,5,6)$ $-2$
$18$ $4$ $(1,5,2,3)(4,6)$ $0$
$12$ $6$ $(1,3,2,5,4,6)$ $-1$
$12$ $6$ $(1,2)(3,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.