Properties

Label 4.2e6_7e3_31e2.12t36.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{6} \cdot 7^{3} \cdot 31^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$21095872= 2^{6} \cdot 7^{3} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{6} + 3 x^{4} - 4 x^{3} + 10 x^{2} - 6 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Even
Determinant: 1.2e2_7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 a + \left(6 a + 14\right)\cdot 19 + \left(5 a + 5\right)\cdot 19^{2} + \left(17 a + 13\right)\cdot 19^{3} + \left(14 a + 13\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 8 + \left(12 a + 12\right)\cdot 19 + \left(13 a + 4\right)\cdot 19^{2} + \left(a + 6\right)\cdot 19^{3} + \left(4 a + 11\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 2 + 10 a\cdot 19 + \left(6 a + 10\right)\cdot 19^{2} + \left(3 a + 3\right)\cdot 19^{3} + 16\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 11 + 11\cdot 19 + 8\cdot 19^{2} + 18\cdot 19^{3} + 12\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 + 17\cdot 19 + 2\cdot 19^{2} + 15\cdot 19^{3} + 8\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 11 + \left(8 a + 1\right)\cdot 19 + \left(12 a + 6\right)\cdot 19^{2} + 15 a\cdot 19^{3} + \left(18 a + 13\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)$
$(1,3)(2,5)(4,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,5)(4,6)$$0$
$6$$2$$(2,4)$$-2$
$9$$2$$(2,4)(5,6)$$0$
$4$$3$$(1,2,4)(3,5,6)$$-2$
$4$$3$$(3,5,6)$$1$
$18$$4$$(1,3)(2,6,4,5)$$0$
$12$$6$$(1,3,2,5,4,6)$$0$
$12$$6$$(2,4)(3,5,6)$$1$
The blue line marks the conjugacy class containing complex conjugation.