Properties

Label 4.2e6_7e3_29e2.24t97.6c2
Dimension 4
Group $((C_2 \times D_4): C_2):C_3$
Conductor $ 2^{6} \cdot 7^{3} \cdot 29^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$((C_2 \times D_4): C_2):C_3$
Conductor:$18461632= 2^{6} \cdot 7^{3} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 4 x^{6} + 10 x^{5} + 10 x^{3} + 80 x^{2} - 2 x + 27 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 24T97
Parity: Even
Determinant: 1.7.3t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 30.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 7 a^{2} + 10 a + 6 + \left(a^{2} + a + 11\right)\cdot 17 + \left(11 a + 8\right)\cdot 17^{2} + \left(3 a^{2} + 12 a + 15\right)\cdot 17^{3} + \left(8 a^{2} + 7 a + 6\right)\cdot 17^{4} + \left(8 a^{2} + 10 a + 4\right)\cdot 17^{5} + \left(8 a^{2} + 14 a + 9\right)\cdot 17^{6} + \left(15 a^{2} + 12 a + 4\right)\cdot 17^{7} + \left(a^{2} + 14 a + 5\right)\cdot 17^{8} + \left(2 a^{2} + 12 a + 6\right)\cdot 17^{9} + \left(12 a + 11\right)\cdot 17^{10} + \left(5 a^{2} + 5 a + 6\right)\cdot 17^{11} + \left(7 a^{2} + 7 a + 7\right)\cdot 17^{12} + \left(6 a^{2} + a + 12\right)\cdot 17^{13} + \left(11 a^{2} + 9 a + 5\right)\cdot 17^{14} + \left(2 a^{2} + 15\right)\cdot 17^{15} + \left(5 a^{2} + 2 a + 9\right)\cdot 17^{16} + \left(12 a^{2} + 3 a + 10\right)\cdot 17^{17} + \left(13 a^{2} + 7 a + 10\right)\cdot 17^{18} + \left(10 a^{2} + 2 a + 11\right)\cdot 17^{19} + \left(14 a^{2} + 6 a + 15\right)\cdot 17^{20} + \left(16 a^{2} + 3 a + 15\right)\cdot 17^{21} + \left(5 a + 10\right)\cdot 17^{22} + \left(16 a^{2} + a + 9\right)\cdot 17^{23} + \left(13 a^{2} + 2 a + 5\right)\cdot 17^{24} + \left(14 a^{2} + 7 a + 6\right)\cdot 17^{25} + \left(11 a^{2} + 5 a + 16\right)\cdot 17^{26} + \left(5 a^{2} + 3 a + 4\right)\cdot 17^{27} + \left(8 a^{2} + 8 a + 10\right)\cdot 17^{28} + \left(2 a^{2} + 9 a + 15\right)\cdot 17^{29} +O\left(17^{ 30 }\right)$
$r_{ 2 }$ $=$ $ 4 a^{2} + 3 a + 4 + \left(a^{2} + 10 a + 11\right)\cdot 17 + \left(3 a + 8\right)\cdot 17^{2} + \left(5 a^{2} + 12 a + 5\right)\cdot 17^{3} + \left(4 a^{2} + 6 a + 4\right)\cdot 17^{4} + \left(6 a^{2} + a + 14\right)\cdot 17^{5} + \left(10 a^{2} + 11 a + 4\right)\cdot 17^{6} + \left(13 a^{2} + 9 a + 3\right)\cdot 17^{7} + \left(8 a^{2} + 8 a + 4\right)\cdot 17^{8} + \left(10 a^{2} + 16 a + 6\right)\cdot 17^{9} + \left(13 a^{2} + 7 a + 3\right)\cdot 17^{10} + \left(8 a^{2} + 5 a + 9\right)\cdot 17^{11} + \left(16 a + 8\right)\cdot 17^{12} + \left(4 a^{2} + 5 a + 16\right)\cdot 17^{13} + \left(15 a^{2} + 16 a + 13\right)\cdot 17^{14} + \left(13 a^{2} + 8 a + 5\right)\cdot 17^{15} + \left(2 a^{2} + 2 a + 8\right)\cdot 17^{16} + \left(2 a^{2} + 14 a + 9\right)\cdot 17^{17} + \left(3 a^{2} + a + 3\right)\cdot 17^{18} + \left(13 a^{2} + 15 a + 13\right)\cdot 17^{19} + \left(12 a^{2} + 10 a + 8\right)\cdot 17^{20} + \left(15 a^{2} + 16 a + 9\right)\cdot 17^{21} + \left(3 a^{2} + a + 1\right)\cdot 17^{22} + \left(9 a^{2} + 14 a + 5\right)\cdot 17^{23} + \left(5 a^{2} + 3 a + 11\right)\cdot 17^{24} + \left(9 a^{2} + 11 a + 2\right)\cdot 17^{25} + \left(a^{2} + a + 15\right)\cdot 17^{26} + \left(2 a^{2} + 13\right)\cdot 17^{27} + \left(16 a^{2} + 2 a + 9\right)\cdot 17^{28} + \left(13 a^{2} + 5 a\right)\cdot 17^{29} +O\left(17^{ 30 }\right)$
$r_{ 3 }$ $=$ $ 9 + 2\cdot 17 + 7\cdot 17^{2} + 8\cdot 17^{3} + 9\cdot 17^{4} + 17^{5} + 6\cdot 17^{6} + 2\cdot 17^{7} + 10\cdot 17^{8} + 11\cdot 17^{9} + 4\cdot 17^{10} + 12\cdot 17^{11} + 3\cdot 17^{12} + 10\cdot 17^{13} + 13\cdot 17^{14} + 8\cdot 17^{15} + 2\cdot 17^{16} + 11\cdot 17^{17} + 4\cdot 17^{18} + 17^{19} + 7\cdot 17^{20} + 5\cdot 17^{21} + 11\cdot 17^{22} + 8\cdot 17^{23} + 11\cdot 17^{24} + 2\cdot 17^{25} + 3\cdot 17^{26} + 17^{27} + 10\cdot 17^{28} + 12\cdot 17^{29} +O\left(17^{ 30 }\right)$
$r_{ 4 }$ $=$ $ 11 + 3\cdot 17 + 10\cdot 17^{2} + 14\cdot 17^{3} + 11\cdot 17^{4} + 5\cdot 17^{5} + 8\cdot 17^{6} + 10\cdot 17^{7} + 7\cdot 17^{8} + 11\cdot 17^{9} + 15\cdot 17^{10} + 16\cdot 17^{11} + 10\cdot 17^{13} + 10\cdot 17^{14} + 14\cdot 17^{15} + 7\cdot 17^{16} + 8\cdot 17^{17} + 16\cdot 17^{18} + 13\cdot 17^{19} + 4\cdot 17^{20} + 5\cdot 17^{21} + 2\cdot 17^{22} + 17^{23} + 11\cdot 17^{24} + 8\cdot 17^{25} + 16\cdot 17^{26} + 7\cdot 17^{27} + 15\cdot 17^{28} + 16\cdot 17^{29} +O\left(17^{ 30 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 4 + \left(16 a^{2} + 15 a + 15\right)\cdot 17 + \left(2 a^{2} + 13 a + 15\right)\cdot 17^{2} + \left(4 a^{2} + a + 9\right)\cdot 17^{3} + \left(2 a^{2} + 15 a + 15\right)\cdot 17^{4} + \left(15 a^{2} + 15 a + 8\right)\cdot 17^{5} + \left(12 a^{2} + 12 a + 11\right)\cdot 17^{6} + \left(14 a^{2} + 2 a + 5\right)\cdot 17^{7} + \left(4 a^{2} + 8 a + 10\right)\cdot 17^{8} + \left(16 a^{2} + 10 a + 9\right)\cdot 17^{9} + \left(14 a^{2} + 9 a + 14\right)\cdot 17^{10} + \left(7 a^{2} + 7 a + 14\right)\cdot 17^{11} + \left(2 a^{2} + 11 a + 8\right)\cdot 17^{12} + \left(4 a^{2} + a + 10\right)\cdot 17^{13} + \left(14 a^{2} + 11 a + 14\right)\cdot 17^{14} + \left(15 a^{2} + a + 11\right)\cdot 17^{15} + \left(16 a^{2} + 12 a + 12\right)\cdot 17^{16} + \left(5 a^{2} + 14 a\right)\cdot 17^{17} + \left(16 a^{2} + 4 a + 8\right)\cdot 17^{18} + \left(6 a^{2} + 6 a + 6\right)\cdot 17^{19} + \left(12 a^{2} + 5 a + 15\right)\cdot 17^{20} + \left(11 a^{2} + 3 a + 10\right)\cdot 17^{21} + \left(15 a^{2} + 2 a + 12\right)\cdot 17^{22} + \left(2 a^{2} + 9 a + 16\right)\cdot 17^{23} + \left(11 a^{2} + 13 a + 14\right)\cdot 17^{24} + \left(6 a^{2} + 11 a + 9\right)\cdot 17^{25} + \left(10 a^{2} + 5 a + 14\right)\cdot 17^{26} + \left(2 a^{2} + 2 a + 8\right)\cdot 17^{27} + \left(12 a^{2} + 5 a\right)\cdot 17^{28} + \left(3 a^{2} + 12 a + 7\right)\cdot 17^{29} +O\left(17^{ 30 }\right)$
$r_{ 6 }$ $=$ $ 6 a^{2} + 4 a + 11 + \left(14 a^{2} + 5 a + 8\right)\cdot 17 + \left(16 a^{2} + 2 a + 8\right)\cdot 17^{2} + \left(8 a^{2} + 9 a + 2\right)\cdot 17^{3} + \left(4 a^{2} + 2 a + 10\right)\cdot 17^{4} + \left(2 a^{2} + 5 a + 11\right)\cdot 17^{5} + \left(15 a^{2} + 8 a + 13\right)\cdot 17^{6} + \left(4 a^{2} + 11 a + 8\right)\cdot 17^{7} + \left(6 a^{2} + 10 a + 2\right)\cdot 17^{8} + \left(4 a^{2} + 4 a + 2\right)\cdot 17^{9} + \left(3 a^{2} + 13 a + 2\right)\cdot 17^{10} + \left(3 a^{2} + 5 a + 11\right)\cdot 17^{11} + \left(9 a^{2} + 10 a + 8\right)\cdot 17^{12} + \left(6 a^{2} + 9 a + 12\right)\cdot 17^{13} + \left(7 a^{2} + 8 a + 8\right)\cdot 17^{14} + \left(7 a + 2\right)\cdot 17^{15} + \left(9 a^{2} + 12 a + 1\right)\cdot 17^{16} + \left(2 a^{2} + 16 a + 4\right)\cdot 17^{17} + \left(7 a + 7\right)\cdot 17^{18} + \left(10 a^{2} + 16 a + 5\right)\cdot 17^{19} + \left(6 a^{2} + 16 a + 10\right)\cdot 17^{20} + \left(a^{2} + 13 a + 5\right)\cdot 17^{21} + \left(12 a^{2} + 9 a + 1\right)\cdot 17^{22} + \left(8 a^{2} + a + 16\right)\cdot 17^{23} + \left(14 a^{2} + 11 a + 5\right)\cdot 17^{24} + \left(9 a^{2} + 15 a + 14\right)\cdot 17^{25} + \left(3 a^{2} + 9 a + 10\right)\cdot 17^{26} + \left(9 a^{2} + 13 a + 1\right)\cdot 17^{27} + \left(9 a^{2} + 6 a + 11\right)\cdot 17^{28} + \left(2 a + 8\right)\cdot 17^{29} +O\left(17^{ 30 }\right)$
$r_{ 7 }$ $=$ $ 2 a^{2} + 5 a + 11 + \left(5 a^{2} + 13\right)\cdot 17 + \left(2 a^{2} + 15 a + 9\right)\cdot 17^{2} + \left(11 a^{2} + 16 a + 14\right)\cdot 17^{3} + \left(13 a^{2} + 3 a + 11\right)\cdot 17^{4} + \left(5 a^{2} + 16 a + 2\right)\cdot 17^{5} + \left(12 a^{2} + 6 a + 11\right)\cdot 17^{6} + \left(3 a + 7\right)\cdot 17^{7} + \left(5 a^{2} + 4 a + 10\right)\cdot 17^{8} + \left(16 a^{2} + 2 a + 9\right)\cdot 17^{9} + \left(10 a^{2} + 4 a\right)\cdot 17^{10} + \left(3 a^{2} + 3 a + 12\right)\cdot 17^{11} + \left(15 a^{2} + 8 a + 11\right)\cdot 17^{12} + \left(12 a^{2} + 13 a + 10\right)\cdot 17^{13} + \left(15 a^{2} + 6 a + 15\right)\cdot 17^{14} + \left(9 a^{2} + 10 a + 7\right)\cdot 17^{15} + \left(3 a^{2} + 14 a + 9\right)\cdot 17^{16} + \left(13 a^{2} + 8 a + 5\right)\cdot 17^{17} + \left(12 a^{2} + 5 a + 11\right)\cdot 17^{18} + \left(10 a^{2} + 8 a + 14\right)\cdot 17^{19} + \left(6 a^{2} + 2 a + 5\right)\cdot 17^{20} + \left(10 a^{2} + 4\right)\cdot 17^{21} + \left(6 a^{2} + 7 a + 12\right)\cdot 17^{22} + \left(7 a^{2} + 3 a + 2\right)\cdot 17^{23} + \left(11 a^{2} + 4 a + 15\right)\cdot 17^{24} + \left(11 a^{2} + 2 a + 1\right)\cdot 17^{25} + \left(10 a^{2} + 15 a + 9\right)\cdot 17^{26} + \left(9 a^{2} + 4 a + 13\right)\cdot 17^{27} + \left(16 a^{2} + 4 a + 14\right)\cdot 17^{28} + \left(12 a^{2} + 4 a + 1\right)\cdot 17^{29} +O\left(17^{ 30 }\right)$
$r_{ 8 }$ $=$ $ 15 a^{2} + 4 a + 14 + \left(12 a^{2} + a + 1\right)\cdot 17 + \left(11 a^{2} + 5 a + 16\right)\cdot 17^{2} + \left(a^{2} + 15 a + 13\right)\cdot 17^{3} + \left(a^{2} + 14 a + 14\right)\cdot 17^{4} + \left(13 a^{2} + a + 1\right)\cdot 17^{5} + \left(8 a^{2} + 14 a + 3\right)\cdot 17^{6} + \left(a^{2} + 10 a + 8\right)\cdot 17^{7} + \left(7 a^{2} + 4 a\right)\cdot 17^{8} + \left(a^{2} + 4 a + 11\right)\cdot 17^{9} + \left(8 a^{2} + 3 a + 15\right)\cdot 17^{10} + \left(5 a^{2} + 6 a + 1\right)\cdot 17^{11} + \left(16 a^{2} + 14 a + 1\right)\cdot 17^{12} + \left(16 a^{2} + a + 2\right)\cdot 17^{13} + \left(3 a^{2} + 16 a + 2\right)\cdot 17^{14} + \left(8 a^{2} + 4 a + 1\right)\cdot 17^{15} + \left(13 a^{2} + 7 a + 16\right)\cdot 17^{16} + \left(14 a^{2} + 10 a\right)\cdot 17^{17} + \left(4 a^{2} + 6 a + 6\right)\cdot 17^{18} + \left(16 a^{2} + 2 a + 1\right)\cdot 17^{19} + \left(14 a^{2} + 9 a\right)\cdot 17^{20} + \left(11 a^{2} + 13 a + 11\right)\cdot 17^{21} + \left(11 a^{2} + 7 a + 15\right)\cdot 17^{22} + \left(6 a^{2} + 4 a + 7\right)\cdot 17^{23} + \left(11 a^{2} + 16 a + 9\right)\cdot 17^{24} + \left(15 a^{2} + 2 a + 4\right)\cdot 17^{25} + \left(12 a^{2} + 13 a + 16\right)\cdot 17^{26} + \left(4 a^{2} + 9 a + 15\right)\cdot 17^{27} + \left(5 a^{2} + 7 a + 12\right)\cdot 17^{28} + 4\cdot 17^{29} +O\left(17^{ 30 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7)(6,8)$
$(2,5)(3,4)$
$(3,4)(6,8)$
$(1,4)(2,6)(3,7)(5,8)$
$(1,5,8,7,2,6)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,7)(2,5)(3,4)(6,8)$$-4$
$6$$2$$(1,7)(6,8)$$0$
$6$$2$$(1,4)(2,6)(3,7)(5,8)$$0$
$6$$2$$(1,8)(2,4)(3,5)(6,7)$$0$
$16$$3$$(1,8,2)(5,7,6)$$\zeta_{3}$
$16$$3$$(1,2,8)(5,6,7)$$-\zeta_{3} - 1$
$6$$4$$(1,3,7,4)(2,6,5,8)$$0$
$6$$4$$(1,6,7,8)(2,3,5,4)$$0$
$16$$6$$(1,5,8,7,2,6)(3,4)$$\zeta_{3} + 1$
$16$$6$$(1,6,2,7,8,5)(3,4)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.