Properties

Label 4.2e6_7e2_41e2.5t4.1c1
Dimension 4
Group $A_5$
Conductor $ 2^{6} \cdot 7^{2} \cdot 41^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$A_5$
Conductor:$5271616= 2^{6} \cdot 7^{2} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 2 x^{3} - 18 x^{2} + 41 x - 41 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 35 + 2\cdot 37 + 22\cdot 37^{2} + 28\cdot 37^{3} + 28\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 16 + \left(32 a + 20\right)\cdot 37 + \left(23 a + 2\right)\cdot 37^{2} + \left(11 a + 29\right)\cdot 37^{3} + \left(5 a + 15\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 a + 15 + \left(4 a + 29\right)\cdot 37 + \left(13 a + 28\right)\cdot 37^{2} + \left(25 a + 14\right)\cdot 37^{3} + \left(31 a + 25\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 17 + \left(20 a + 27\right)\cdot 37 + \left(17 a + 3\right)\cdot 37^{2} + \left(9 a + 9\right)\cdot 37^{3} + \left(8 a + 27\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 34 a + 29 + \left(16 a + 30\right)\cdot 37 + \left(19 a + 16\right)\cdot 37^{2} + \left(27 a + 29\right)\cdot 37^{3} + \left(28 a + 13\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$12$$5$$(1,2,3,4,5)$$-1$
$12$$5$$(1,3,4,5,2)$$-1$
The blue line marks the conjugacy class containing complex conjugation.