Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 35 + 2\cdot 37 + 22\cdot 37^{2} + 28\cdot 37^{3} + 28\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 9 a + 16 + \left(32 a + 20\right)\cdot 37 + \left(23 a + 2\right)\cdot 37^{2} + \left(11 a + 29\right)\cdot 37^{3} + \left(5 a + 15\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 28 a + 15 + \left(4 a + 29\right)\cdot 37 + \left(13 a + 28\right)\cdot 37^{2} + \left(25 a + 14\right)\cdot 37^{3} + \left(31 a + 25\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 3 a + 17 + \left(20 a + 27\right)\cdot 37 + \left(17 a + 3\right)\cdot 37^{2} + \left(9 a + 9\right)\cdot 37^{3} + \left(8 a + 27\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 34 a + 29 + \left(16 a + 30\right)\cdot 37 + \left(19 a + 16\right)\cdot 37^{2} + \left(27 a + 29\right)\cdot 37^{3} + \left(28 a + 13\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$1$ |
| $12$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $12$ |
$5$ |
$(1,3,4,5,2)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.