Properties

Label 4.2e6_7e2_19e2.5t4.1c1
Dimension 4
Group $A_5$
Conductor $ 2^{6} \cdot 7^{2} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$A_5$
Conductor:$1132096= 2^{6} \cdot 7^{2} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 8 x^{3} - 8 x^{2} + 12 x - 20 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 37 + 32\cdot 43 + 2\cdot 43^{2} + 18\cdot 43^{3} + 38\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 a + 33 + \left(41 a + 10\right)\cdot 43 + \left(11 a + 35\right)\cdot 43^{2} + \left(23 a + 27\right)\cdot 43^{3} + \left(36 a + 7\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 22 + \left(a + 20\right)\cdot 43 + \left(31 a + 5\right)\cdot 43^{2} + \left(19 a + 39\right)\cdot 43^{3} + \left(6 a + 20\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 a + 31 + 41\cdot 43 + \left(24 a + 30\right)\cdot 43^{2} + \left(32 a + 17\right)\cdot 43^{3} + \left(36 a + 7\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 a + 7 + \left(42 a + 23\right)\cdot 43 + \left(18 a + 11\right)\cdot 43^{2} + \left(10 a + 26\right)\cdot 43^{3} + \left(6 a + 11\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$12$$5$$(1,2,3,4,5)$$-1$
$12$$5$$(1,3,4,5,2)$$-1$
The blue line marks the conjugacy class containing complex conjugation.