Properties

Label 4.2e6_7e2_11e2.8t26.4
Dimension 4
Group $(C_4^2 : C_2):C_2$
Conductor $ 2^{6} \cdot 7^{2} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(C_4^2 : C_2):C_2$
Conductor:$379456= 2^{6} \cdot 7^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + 5 x^{6} - 6 x^{5} + 3 x^{4} + 4 x^{3} - 10 x^{2} + 16 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_4^2 : C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ a + 9 + 3 a\cdot 17 + \left(7 a + 7\right)\cdot 17^{2} + \left(7 a + 1\right)\cdot 17^{3} + \left(13 a + 14\right)\cdot 17^{4} + \left(9 a + 7\right)\cdot 17^{5} + \left(a + 4\right)\cdot 17^{6} + \left(a + 8\right)\cdot 17^{7} + 15 a\cdot 17^{8} + \left(13 a + 8\right)\cdot 17^{9} + \left(3 a + 11\right)\cdot 17^{10} + \left(16 a + 8\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 15 + \left(3 a + 4\right)\cdot 17 + \left(9 a + 6\right)\cdot 17^{2} + \left(5 a + 4\right)\cdot 17^{3} + 16 a\cdot 17^{4} + \left(12 a + 2\right)\cdot 17^{5} + \left(a + 15\right)\cdot 17^{6} + \left(4 a + 8\right)\cdot 17^{7} + \left(10 a + 2\right)\cdot 17^{8} + \left(2 a + 12\right)\cdot 17^{9} + \left(11 a + 15\right)\cdot 17^{10} + \left(4 a + 5\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 10 + \left(13 a + 2\right)\cdot 17 + \left(9 a + 11\right)\cdot 17^{2} + \left(9 a + 1\right)\cdot 17^{3} + \left(3 a + 3\right)\cdot 17^{4} + \left(7 a + 4\right)\cdot 17^{5} + \left(15 a + 13\right)\cdot 17^{6} + \left(15 a + 7\right)\cdot 17^{7} + \left(a + 14\right)\cdot 17^{8} + \left(3 a + 6\right)\cdot 17^{9} + \left(13 a + 1\right)\cdot 17^{10} + 4\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 16 + 6\cdot 17 + 6\cdot 17^{2} + 9\cdot 17^{3} + 9\cdot 17^{4} + 13\cdot 17^{5} + 13\cdot 17^{6} + 4\cdot 17^{7} + 5\cdot 17^{8} + 12\cdot 17^{9} + 11\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 5 }$ $=$ $ a + 5 + \left(6 a + 10\right)\cdot 17 + \left(7 a + 7\right)\cdot 17^{2} + \left(10 a + 6\right)\cdot 17^{3} + \left(2 a + 9\right)\cdot 17^{4} + \left(7 a + 11\right)\cdot 17^{5} + \left(6 a + 4\right)\cdot 17^{6} + \left(a + 3\right)\cdot 17^{7} + \left(12 a + 4\right)\cdot 17^{8} + 3 a\cdot 17^{9} + \left(9 a + 14\right)\cdot 17^{10} + \left(6 a + 16\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 14 + 15\cdot 17 + 8\cdot 17^{2} + 2\cdot 17^{4} + 14\cdot 17^{5} + 8\cdot 17^{6} + 8\cdot 17^{7} + 15\cdot 17^{9} + 14\cdot 17^{10} + 7\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 3 a + 12 + \left(13 a + 11\right)\cdot 17 + \left(7 a + 11\right)\cdot 17^{2} + 11 a\cdot 17^{3} + 11\cdot 17^{4} + \left(4 a + 15\right)\cdot 17^{5} + \left(15 a + 3\right)\cdot 17^{6} + \left(12 a + 11\right)\cdot 17^{7} + \left(6 a + 8\right)\cdot 17^{8} + \left(14 a + 4\right)\cdot 17^{9} + \left(5 a + 7\right)\cdot 17^{10} + \left(12 a + 16\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 16 a + 6 + \left(10 a + 15\right)\cdot 17 + \left(9 a + 8\right)\cdot 17^{2} + \left(6 a + 9\right)\cdot 17^{3} + \left(14 a + 1\right)\cdot 17^{4} + \left(9 a + 16\right)\cdot 17^{5} + \left(10 a + 3\right)\cdot 17^{6} + \left(15 a + 15\right)\cdot 17^{7} + \left(4 a + 14\right)\cdot 17^{8} + \left(13 a + 8\right)\cdot 17^{9} + \left(7 a + 2\right)\cdot 17^{10} + \left(10 a + 14\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5,7,8)(2,4,3,6)$
$(1,7)(4,6)$
$(2,3)(5,8)$
$(4,6)(5,8)$
$(1,3)(2,7)(4,8)(5,6)$
$(1,2,7,3)(4,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,7)(2,3)(4,6)(5,8)$ $-4$
$2$ $2$ $(1,7)(2,3)$ $0$
$4$ $2$ $(1,7)(4,6)$ $0$
$4$ $2$ $(1,3)(2,7)(4,8)(5,6)$ $0$
$4$ $2$ $(1,5)(2,6)(3,4)(7,8)$ $0$
$4$ $2$ $(1,5)(2,4)(3,6)(7,8)$ $0$
$8$ $2$ $(1,2)(3,7)(4,6)$ $0$
$2$ $4$ $(1,3,7,2)(4,8,6,5)$ $0$
$2$ $4$ $(1,3,7,2)(4,5,6,8)$ $0$
$4$ $4$ $(1,5,7,8)(2,4,3,6)$ $0$
$4$ $4$ $(1,2,7,3)(4,6)(5,8)$ $-2$
$4$ $4$ $(1,6,7,4)(2,8,3,5)$ $0$
$4$ $4$ $(1,2,7,3)$ $2$
$8$ $8$ $(1,5,2,4,7,8,3,6)$ $0$
$8$ $8$ $(1,6,3,5,7,4,2,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.