Properties

Label 4.2e6_7_37e2.8t29.1c1
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 2^{6} \cdot 7 \cdot 37^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$613312= 2^{6} \cdot 7 \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{5} - 16 x^{4} + 24 x^{3} - 7 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Odd
Determinant: 1.7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 673 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ $ 77 + 17\cdot 673 + 49\cdot 673^{2} + 483\cdot 673^{3} + 630\cdot 673^{4} + 512\cdot 673^{5} + 216\cdot 673^{6} +O\left(673^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 266 + 457\cdot 673 + 399\cdot 673^{2} + 412\cdot 673^{3} + 473\cdot 673^{4} + 207\cdot 673^{5} + 158\cdot 673^{6} +O\left(673^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 315 + 189\cdot 673 + 437\cdot 673^{2} + 473\cdot 673^{3} + 415\cdot 673^{4} + 389\cdot 673^{5} + 228\cdot 673^{6} +O\left(673^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 413 + 57\cdot 673 + 440\cdot 673^{2} + 124\cdot 673^{3} + 67\cdot 673^{4} + 185\cdot 673^{5} + 98\cdot 673^{6} +O\left(673^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 495 + 7\cdot 673 + 207\cdot 673^{2} + 40\cdot 673^{3} + 232\cdot 673^{4} + 10\cdot 673^{5} + 411\cdot 673^{6} +O\left(673^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 508 + 190\cdot 673 + 17\cdot 673^{2} + 410\cdot 673^{3} + 9\cdot 673^{4} + 615\cdot 673^{5} + 559\cdot 673^{6} +O\left(673^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 634 + 464\cdot 673 + 100\cdot 673^{2} + 566\cdot 673^{3} + 576\cdot 673^{4} + 496\cdot 673^{5} + 600\cdot 673^{6} +O\left(673^{ 7 }\right)$
$r_{ 8 }$ $=$ $ 657 + 633\cdot 673 + 367\cdot 673^{2} + 181\cdot 673^{3} + 286\cdot 673^{4} + 274\cdot 673^{5} + 418\cdot 673^{6} +O\left(673^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,8)(3,6)(5,7)$
$(1,5)(3,8)$
$(2,6)(4,7)$
$(1,2,5,6)(4,7)$
$(3,8)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,5)(2,6)(3,8)(4,7)$$-4$
$2$$2$$(1,5)(2,6)$$0$
$2$$2$$(1,2)(3,4)(5,6)(7,8)$$0$
$2$$2$$(1,2)(3,7)(4,8)(5,6)$$0$
$4$$2$$(1,4)(2,8)(3,6)(5,7)$$0$
$4$$2$$(1,5)(3,8)$$0$
$4$$2$$(1,2)(5,6)$$2$
$4$$2$$(1,7)(2,8)(3,6)(4,5)$$0$
$4$$2$$(1,2)(3,8)(4,7)(5,6)$$-2$
$4$$4$$(1,7,5,4)(2,8,6,3)$$0$
$4$$4$$(1,4,5,7)(2,8,6,3)$$0$
$4$$4$$(1,2,5,6)(3,7,8,4)$$0$
$8$$4$$(1,2,5,6)(4,7)$$0$
$8$$4$$(1,8,2,7)(3,6,4,5)$$0$
$8$$4$$(1,8,2,4)(3,6,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.