Properties

Label 4.2e6_67e2.5t4.2
Dimension 4
Group $A_5$
Conductor $ 2^{6} \cdot 67^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$A_5$
Conductor:$287296= 2^{6} \cdot 67^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - x^{3} + 7 x^{2} - 9 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 263 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 53 + 203\cdot 263 + 22\cdot 263^{2} + 129\cdot 263^{3} + 229\cdot 263^{4} +O\left(263^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 57 + 137\cdot 263 + 38\cdot 263^{2} + 116\cdot 263^{3} + 57\cdot 263^{4} +O\left(263^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 80 + 215\cdot 263 + 78\cdot 263^{2} + 82\cdot 263^{3} + 224\cdot 263^{4} +O\left(263^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 99 + 211\cdot 263 + 143\cdot 263^{2} + 253\cdot 263^{3} + 128\cdot 263^{4} +O\left(263^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 238 + 21\cdot 263 + 242\cdot 263^{2} + 207\cdot 263^{3} + 148\cdot 263^{4} +O\left(263^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$12$ $5$ $(1,2,3,4,5)$ $-1$
$12$ $5$ $(1,3,4,5,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.