Properties

Label 4.2e6_5e8.5t4.4
Dimension 4
Group $\PSL(2,5)$
Conductor $ 2^{6} \cdot 5^{8}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PSL(2,5)$
Conductor:$25000000= 2^{6} \cdot 5^{8} $
Artin number field: Splitting field of $f= x^{6} + 5 x^{4} + 15 x^{2} - 32 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 49 a + 29 + \left(7 a + 24\right)\cdot 53 + \left(35 a + 2\right)\cdot 53^{2} + \left(22 a + 28\right)\cdot 53^{3} + \left(15 a + 2\right)\cdot 53^{4} + \left(47 a + 35\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 39 a + 37 + \left(12 a + 47\right)\cdot 53 + \left(22 a + 11\right)\cdot 53^{2} + \left(11 a + 32\right)\cdot 53^{3} + \left(52 a + 21\right)\cdot 53^{4} + \left(49 a + 29\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 21 + 37\cdot 53 + 47\cdot 53^{2} + 50\cdot 53^{3} + 49\cdot 53^{4} + 28\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 13 + \left(45 a + 7\right)\cdot 53 + \left(17 a + 29\right)\cdot 53^{2} + \left(30 a + 30\right)\cdot 53^{3} + \left(37 a + 41\right)\cdot 53^{4} + \left(5 a + 49\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 25 + 35\cdot 53 + 32\cdot 53^{2} + 14\cdot 53^{3} + 36\cdot 53^{4} + 50\cdot 53^{5} +O\left(53^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 34 + \left(40 a + 6\right)\cdot 53 + \left(30 a + 35\right)\cdot 53^{2} + \left(41 a + 2\right)\cdot 53^{3} + 7\cdot 53^{4} + \left(3 a + 18\right)\cdot 53^{5} +O\left(53^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(4,6)$
$(1,3,2)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$15$ $2$ $(1,5)(4,6)$ $0$
$20$ $3$ $(1,3,2)(4,5,6)$ $1$
$12$ $5$ $(1,3,2,5,4)$ $-1$
$12$ $5$ $(1,2,4,3,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.