Properties

Label 4.87880000.24t97.i.a
Dimension $4$
Group $((C_2 \times D_4): C_2):C_3$
Conductor $87880000$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $((C_2 \times D_4): C_2):C_3$
Conductor: \(87880000\)\(\medspace = 2^{6} \cdot 5^{4} \cdot 13^{3} \)
Artin stem field: Galois closure of 8.0.28561000000.1
Galois orbit size: $2$
Smallest permutation container: 24T97
Parity: even
Determinant: 1.13.3t1.a.a
Projective image: $C_2^2:A_4$
Projective stem field: Galois closure of 12.4.2088270645760000.1

Defining polynomial

$f(x)$$=$ \( x^{8} - x^{7} + 9x^{6} - 2x^{5} + 9x^{4} - 9x^{3} - 24x^{2} + 7x + 11 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: \( x^{3} + 2x + 9 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 3\cdot 11 + 7\cdot 11^{2} + 8\cdot 11^{3} + 9\cdot 11^{5} + 3\cdot 11^{6} + 11^{7} + 2\cdot 11^{8} + 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 7 a^{2} + 8 a + 9 + \left(8 a^{2} + 6 a + 2\right)\cdot 11 + \left(2 a^{2} + 9\right)\cdot 11^{2} + \left(4 a + 1\right)\cdot 11^{3} + \left(10 a^{2} + 4 a + 6\right)\cdot 11^{4} + \left(6 a^{2} + a + 10\right)\cdot 11^{5} + \left(a^{2} + 8 a + 7\right)\cdot 11^{6} + \left(8 a^{2} + 9 a + 3\right)\cdot 11^{7} + \left(10 a^{2} + 10 a + 9\right)\cdot 11^{8} + \left(9 a^{2} + 7 a\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 7 a^{2} + 2 a + 3 + \left(7 a^{2} + 8 a + 7\right)\cdot 11 + \left(a^{2} + 10\right)\cdot 11^{2} + \left(6 a^{2} + a + 9\right)\cdot 11^{3} + \left(2 a^{2} + 6\right)\cdot 11^{4} + \left(5 a^{2} + 4 a + 9\right)\cdot 11^{5} + \left(7 a^{2} + 5 a + 9\right)\cdot 11^{6} + \left(4 a^{2} + 8 a + 10\right)\cdot 11^{7} + \left(5 a + 4\right)\cdot 11^{8} + \left(2 a^{2} + 3 a + 10\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 10 + 9\cdot 11 + 5\cdot 11^{2} + 3\cdot 11^{3} + 10\cdot 11^{4} + 11^{6} + 6\cdot 11^{7} + 10\cdot 11^{8} + 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 10 a^{2} + 5 a + 2 + \left(6 a^{2} + 6 a + 4\right)\cdot 11 + \left(2 a^{2} + 2 a + 5\right)\cdot 11^{2} + \left(5 a^{2} + 4 a + 8\right)\cdot 11^{3} + \left(9 a^{2} + 7 a + 1\right)\cdot 11^{4} + \left(2 a^{2} + 5\right)\cdot 11^{5} + \left(9 a^{2} + 10 a + 3\right)\cdot 11^{6} + \left(7 a + 1\right)\cdot 11^{7} + \left(2 a^{2} + 3 a + 5\right)\cdot 11^{8} + \left(9 a^{2} + 6 a + 3\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 10 a^{2} + 3 a + 7 + \left(2 a^{2} + 7 a + 4\right)\cdot 11 + \left(10 a^{2} + 8 a + 7\right)\cdot 11^{2} + \left(2 a^{2} + 10 a + 5\right)\cdot 11^{3} + \left(7 a^{2} + 3 a + 9\right)\cdot 11^{4} + \left(10 a^{2} + 5\right)\cdot 11^{5} + \left(a + 8\right)\cdot 11^{6} + \left(4 a^{2} + 3 a + 2\right)\cdot 11^{7} + \left(8 a^{2} + 8 a + 8\right)\cdot 11^{8} + \left(4 a^{2} + 4 a + 6\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 5 a^{2} + 9 a + 10 + \left(6 a^{2} + 8 a + 10\right)\cdot 11 + \left(5 a^{2} + 7 a + 1\right)\cdot 11^{2} + \left(5 a^{2} + 2 a + 5\right)\cdot 11^{3} + \left(2 a^{2} + 10 a + 3\right)\cdot 11^{4} + \left(a^{2} + 8 a + 10\right)\cdot 11^{5} + \left(3 a + 5\right)\cdot 11^{6} + \left(2 a^{2} + 4 a + 6\right)\cdot 11^{7} + \left(9 a^{2} + 7 a + 3\right)\cdot 11^{8} + \left(2 a^{2} + 7 a + 2\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 5 a^{2} + 6 a + 4 + \left(6 a + 1\right)\cdot 11 + \left(10 a^{2} + a + 7\right)\cdot 11^{2} + \left(a^{2} + 10 a\right)\cdot 11^{3} + \left(a^{2} + 6 a + 5\right)\cdot 11^{4} + \left(6 a^{2} + 6 a + 3\right)\cdot 11^{5} + \left(2 a^{2} + 4 a + 3\right)\cdot 11^{6} + \left(2 a^{2} + 10 a\right)\cdot 11^{7} + \left(2 a^{2} + 7 a\right)\cdot 11^{8} + \left(4 a^{2} + 2 a + 6\right)\cdot 11^{9} +O(11^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,6)(7,8)$
$(1,2)(3,7)(4,6)(5,8)$
$(3,5)(7,8)$
$(1,8,2,4,7,6)(3,5)$
$(1,4)(2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$1$$2$$(1,4)(2,6)(3,5)(7,8)$$-4$
$6$$2$$(1,2)(3,7)(4,6)(5,8)$$0$
$6$$2$$(1,4)(2,6)$$0$
$6$$2$$(1,7)(2,5)(3,6)(4,8)$$0$
$16$$3$$(1,2,7)(4,6,8)$$-\zeta_{3} - 1$
$16$$3$$(1,7,2)(4,8,6)$$\zeta_{3}$
$6$$4$$(1,2,4,6)(3,7,5,8)$$0$
$6$$4$$(1,5,4,3)(2,8,6,7)$$0$
$16$$6$$(1,8,2,4,7,6)(3,5)$$-\zeta_{3}$
$16$$6$$(1,6,7,4,2,8)(3,5)$$\zeta_{3} + 1$