Properties

Label 4.2e6_5e3_7e2.5t3.1c1
Dimension 4
Group $F_5$
Conductor $ 2^{6} \cdot 5^{3} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$F_5$
Conductor:$392000= 2^{6} \cdot 5^{3} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 4 x^{3} - 8 x^{2} + 11 x - 10 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $F_5$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 25 + 7\cdot 41 + 33\cdot 41^{2} + 25\cdot 41^{3} + 33\cdot 41^{4} + 37\cdot 41^{5} + 19\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 30 a + 9 + 7 a\cdot 41 + \left(20 a + 34\right)\cdot 41^{2} + \left(16 a + 26\right)\cdot 41^{3} + \left(36 a + 5\right)\cdot 41^{4} + \left(8 a + 23\right)\cdot 41^{5} + \left(27 a + 40\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 34 + \left(34 a + 10\right)\cdot 41 + \left(5 a + 13\right)\cdot 41^{2} + \left(34 a + 20\right)\cdot 41^{3} + \left(35 a + 17\right)\cdot 41^{4} + \left(19 a + 12\right)\cdot 41^{5} + \left(13 a + 5\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 11 a + 17 + \left(33 a + 34\right)\cdot 41 + \left(20 a + 4\right)\cdot 41^{2} + \left(24 a + 15\right)\cdot 41^{3} + \left(4 a + 16\right)\cdot 41^{4} + \left(32 a + 13\right)\cdot 41^{5} + \left(13 a + 31\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 39 a + 40 + \left(6 a + 28\right)\cdot 41 + \left(35 a + 37\right)\cdot 41^{2} + \left(6 a + 34\right)\cdot 41^{3} + \left(5 a + 8\right)\cdot 41^{4} + \left(21 a + 36\right)\cdot 41^{5} + \left(27 a + 25\right)\cdot 41^{6} +O\left(41^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)(3,4)$
$(1,4,2,3)$
$(1,2,3,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$5$$2$$(1,2)(3,4)$$0$
$5$$4$$(1,4,2,3)$$0$
$5$$4$$(1,3,2,4)$$0$
$4$$5$$(1,2,3,5,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.