Properties

Label 4.2e6_5e3_31e2.8t29.2
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 2^{6} \cdot 5^{3} \cdot 31^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$7688000= 2^{6} \cdot 5^{3} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{8} - 6 x^{5} + 7 x^{4} + 6 x^{3} + 10 x^{2} + 6 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 9 a + 25 + \left(24 a + 9\right)\cdot 29 + \left(4 a + 10\right)\cdot 29^{2} + \left(15 a + 19\right)\cdot 29^{3} + \left(9 a + 22\right)\cdot 29^{4} + \left(27 a + 2\right)\cdot 29^{5} + \left(a + 21\right)\cdot 29^{6} + 3\cdot 29^{7} + \left(3 a + 28\right)\cdot 29^{8} + \left(6 a + 17\right)\cdot 29^{9} + \left(14 a + 25\right)\cdot 29^{10} + \left(7 a + 7\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 11 + \left(14 a + 10\right)\cdot 29 + \left(5 a + 14\right)\cdot 29^{2} + \left(10 a + 24\right)\cdot 29^{3} + \left(21 a + 27\right)\cdot 29^{4} + 4\cdot 29^{5} + \left(9 a + 10\right)\cdot 29^{6} + \left(28 a + 8\right)\cdot 29^{7} + \left(28 a + 9\right)\cdot 29^{8} + \left(24 a + 28\right)\cdot 29^{9} + \left(4 a + 12\right)\cdot 29^{10} + \left(16 a + 6\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 24 + 14\cdot 29 + 3\cdot 29^{2} + 3\cdot 29^{3} + 26\cdot 29^{4} + 28\cdot 29^{5} + 10\cdot 29^{6} + 5\cdot 29^{7} + 15\cdot 29^{8} + 25\cdot 29^{9} + 10\cdot 29^{10} + 22\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 9 + 8\cdot 29 + 3\cdot 29^{2} + 4\cdot 29^{3} + 22\cdot 29^{4} + 11\cdot 29^{5} + 28\cdot 29^{6} + 14\cdot 29^{7} + 23\cdot 29^{8} + 23\cdot 29^{9} + 20\cdot 29^{10} + 13\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 20 a + 12 + \left(4 a + 6\right)\cdot 29 + \left(24 a + 10\right)\cdot 29^{2} + \left(13 a + 3\right)\cdot 29^{3} + \left(19 a + 26\right)\cdot 29^{4} + \left(a + 13\right)\cdot 29^{5} + \left(27 a + 3\right)\cdot 29^{6} + \left(28 a + 2\right)\cdot 29^{7} + \left(25 a + 14\right)\cdot 29^{8} + \left(22 a + 16\right)\cdot 29^{9} + \left(14 a + 3\right)\cdot 29^{10} + \left(21 a + 2\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 13 + \left(14 a + 12\right)\cdot 29 + \left(23 a + 27\right)\cdot 29^{2} + \left(18 a + 11\right)\cdot 29^{3} + \left(7 a + 8\right)\cdot 29^{4} + \left(28 a + 16\right)\cdot 29^{5} + \left(19 a + 25\right)\cdot 29^{6} + 24\cdot 29^{7} + 9\cdot 29^{8} + \left(4 a + 8\right)\cdot 29^{9} + \left(24 a + 12\right)\cdot 29^{10} + \left(12 a + 24\right)\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 25 + 26\cdot 29 + 12\cdot 29^{2} + 17\cdot 29^{3} + 28\cdot 29^{4} + 24\cdot 29^{5} + 22\cdot 29^{6} + 9\cdot 29^{7} + 15\cdot 29^{8} + 26\cdot 29^{9} + 11\cdot 29^{10} + 13\cdot 29^{11} +O\left(29^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 26 + 26\cdot 29 + 4\cdot 29^{2} + 3\cdot 29^{3} + 12\cdot 29^{4} + 12\cdot 29^{5} + 22\cdot 29^{6} + 17\cdot 29^{7} + 27\cdot 29^{9} + 17\cdot 29^{10} + 25\cdot 29^{11} +O\left(29^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(3,8)$
$(1,5)(4,7)$
$(1,2,3,4)(5,6,8,7)$
$(2,6)(4,7)$
$(2,7)(4,6)$
$(1,4,3,2)(5,7,8,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,5)(2,6)(3,8)(4,7)$ $-4$
$2$ $2$ $(1,5)(3,8)$ $0$
$2$ $2$ $(1,3)(2,4)(5,8)(6,7)$ $0$
$2$ $2$ $(1,8)(2,4)(3,5)(6,7)$ $0$
$4$ $2$ $(1,5)(4,7)$ $0$
$4$ $2$ $(2,7)(4,6)$ $-2$
$4$ $2$ $(1,5)(2,7)(3,8)(4,6)$ $2$
$4$ $2$ $(1,6)(2,5)(3,7)(4,8)$ $0$
$4$ $2$ $(1,7)(2,3)(4,5)(6,8)$ $0$
$4$ $4$ $(1,8,5,3)(2,4,6,7)$ $0$
$4$ $4$ $(1,2,5,6)(3,4,8,7)$ $0$
$4$ $4$ $(1,6,5,2)(3,4,8,7)$ $0$
$8$ $4$ $(1,2,3,4)(5,6,8,7)$ $0$
$8$ $4$ $(1,6,8,7)(2,3,4,5)$ $0$
$8$ $4$ $(1,5)(2,4,6,7)$ $0$
The blue line marks the conjugacy class containing complex conjugation.