Properties

Label 4.2e6_5e3_29e2.12t34.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{6} \cdot 5^{3} \cdot 29^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$6728000= 2^{6} \cdot 5^{3} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + x^{4} + 3 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 20 + 21\cdot 59 + 15\cdot 59^{2} + 55\cdot 59^{3} + 2\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 19 a + 22 + \left(39 a + 13\right)\cdot 59 + \left(2 a + 1\right)\cdot 59^{2} + \left(5 a + 48\right)\cdot 59^{3} + \left(28 a + 58\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 a + 25 + \left(24 a + 50\right)\cdot 59 + \left(22 a + 9\right)\cdot 59^{2} + \left(36 a + 31\right)\cdot 59^{3} + \left(42 a + 6\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 + 6\cdot 59 + 59^{2} + 6\cdot 59^{3} + 14\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 40 a + 41 + \left(19 a + 33\right)\cdot 59 + \left(56 a + 23\right)\cdot 59^{2} + \left(53 a + 50\right)\cdot 59^{3} + \left(30 a + 22\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 36 a + 48 + \left(34 a + 51\right)\cdot 59 + \left(36 a + 7\right)\cdot 59^{2} + \left(22 a + 45\right)\cdot 59^{3} + \left(16 a + 12\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $-2$
$6$ $2$ $(3,6)$ $0$
$9$ $2$ $(3,6)(4,5)$ $0$
$4$ $3$ $(1,3,6)(2,4,5)$ $1$
$4$ $3$ $(1,3,6)$ $-2$
$18$ $4$ $(1,2)(3,5,6,4)$ $0$
$12$ $6$ $(1,4,3,5,6,2)$ $1$
$12$ $6$ $(2,4,5)(3,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.