Properties

Label 4.2e6_5e3_19e2.6t10.1c1
Dimension 4
Group $C_3^2:C_4$
Conductor $ 2^{6} \cdot 5^{3} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:C_4$
Conductor:$2888000= 2^{6} \cdot 5^{3} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - x^{4} - 12 x^{3} - 24 x^{2} - 20 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:C_4$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 20.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 6\cdot 11 + 5\cdot 11^{2} + 4\cdot 11^{3} + 11^{4} + 6\cdot 11^{5} + 11^{6} + 3\cdot 11^{7} + 11^{8} + 10\cdot 11^{9} + 2\cdot 11^{10} + 6\cdot 11^{11} + 3\cdot 11^{12} + 10\cdot 11^{13} + 4\cdot 11^{14} + 8\cdot 11^{15} + 9\cdot 11^{16} + 2\cdot 11^{17} + 6\cdot 11^{18} + 6\cdot 11^{19} +O\left(11^{ 20 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 5 + \left(7 a + 9\right)\cdot 11 + \left(2 a + 6\right)\cdot 11^{2} + \left(7 a + 2\right)\cdot 11^{3} + \left(5 a + 5\right)\cdot 11^{4} + \left(10 a + 9\right)\cdot 11^{5} + 3\cdot 11^{6} + \left(9 a + 3\right)\cdot 11^{7} + \left(3 a + 5\right)\cdot 11^{8} + \left(6 a + 1\right)\cdot 11^{9} + \left(6 a + 4\right)\cdot 11^{10} + \left(3 a + 4\right)\cdot 11^{11} + \left(9 a + 1\right)\cdot 11^{12} + \left(10 a + 4\right)\cdot 11^{13} + 3\cdot 11^{14} + a\cdot 11^{15} + \left(7 a + 9\right)\cdot 11^{16} + \left(7 a + 1\right)\cdot 11^{17} + \left(2 a + 9\right)\cdot 11^{18} + \left(8 a + 6\right)\cdot 11^{19} +O\left(11^{ 20 }\right)$
$r_{ 3 }$ $=$ $ 7 + 10\cdot 11 + 10\cdot 11^{2} + 4\cdot 11^{4} + 6\cdot 11^{6} + 9\cdot 11^{7} + 8\cdot 11^{8} + 8\cdot 11^{9} + 5\cdot 11^{10} + 5\cdot 11^{11} + 3\cdot 11^{12} + 11^{13} + 8\cdot 11^{14} + 9\cdot 11^{15} + 2\cdot 11^{16} + 6\cdot 11^{17} + 5\cdot 11^{18} + 5\cdot 11^{19} +O\left(11^{ 20 }\right)$
$r_{ 4 }$ $=$ $ 3 a + \left(5 a + 6\right)\cdot 11 + \left(3 a + 6\right)\cdot 11^{2} + \left(5 a + 5\right)\cdot 11^{3} + \left(6 a + 1\right)\cdot 11^{4} + \left(4 a + 7\right)\cdot 11^{5} + \left(7 a + 10\right)\cdot 11^{6} + \left(2 a + 3\right)\cdot 11^{7} + \left(7 a + 6\right)\cdot 11^{8} + \left(3 a + 7\right)\cdot 11^{9} + \left(7 a + 1\right)\cdot 11^{10} + \left(10 a + 1\right)\cdot 11^{11} + \left(2 a + 5\right)\cdot 11^{12} + \left(3 a + 6\right)\cdot 11^{13} + 8 a\cdot 11^{14} + \left(8 a + 3\right)\cdot 11^{15} + \left(9 a + 5\right)\cdot 11^{16} + \left(2 a + 8\right)\cdot 11^{17} + \left(a + 9\right)\cdot 11^{18} + \left(10 a + 1\right)\cdot 11^{19} +O\left(11^{ 20 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 1 + \left(5 a + 2\right)\cdot 11 + \left(7 a + 4\right)\cdot 11^{2} + \left(5 a + 1\right)\cdot 11^{3} + 4 a\cdot 11^{4} + \left(6 a + 8\right)\cdot 11^{5} + \left(3 a + 2\right)\cdot 11^{6} + \left(8 a + 7\right)\cdot 11^{7} + \left(3 a + 10\right)\cdot 11^{8} + \left(7 a + 3\right)\cdot 11^{9} + \left(3 a + 5\right)\cdot 11^{10} + 3\cdot 11^{11} + \left(8 a + 6\right)\cdot 11^{12} + \left(7 a + 5\right)\cdot 11^{13} + \left(2 a + 8\right)\cdot 11^{14} + \left(2 a + 7\right)\cdot 11^{15} + \left(a + 2\right)\cdot 11^{16} + \left(8 a + 10\right)\cdot 11^{17} + 9 a\cdot 11^{18} + 8\cdot 11^{19} +O\left(11^{ 20 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 8 + \left(3 a + 9\right)\cdot 11 + \left(8 a + 9\right)\cdot 11^{2} + \left(3 a + 6\right)\cdot 11^{3} + \left(5 a + 9\right)\cdot 11^{4} + 11^{5} + \left(10 a + 8\right)\cdot 11^{6} + \left(a + 5\right)\cdot 11^{7} + 7 a\cdot 11^{8} + \left(4 a + 1\right)\cdot 11^{9} + \left(4 a + 2\right)\cdot 11^{10} + \left(7 a + 1\right)\cdot 11^{11} + \left(a + 2\right)\cdot 11^{12} + 5\cdot 11^{13} + \left(10 a + 7\right)\cdot 11^{14} + \left(9 a + 3\right)\cdot 11^{15} + \left(3 a + 3\right)\cdot 11^{16} + \left(3 a + 3\right)\cdot 11^{17} + \left(8 a + 1\right)\cdot 11^{18} + \left(2 a + 4\right)\cdot 11^{19} +O\left(11^{ 20 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)$
$(1,4,2,3)(5,6)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$9$$2$$(1,2)(3,4)$$0$
$4$$3$$(3,4,5)$$1$
$4$$3$$(1,2,6)(3,4,5)$$-2$
$9$$4$$(1,4,2,3)(5,6)$$0$
$9$$4$$(1,3,2,4)(5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.