Properties

Label 4.2e6_5e3_11e4.6t10.2
Dimension 4
Group $C_3^2:C_4$
Conductor $ 2^{6} \cdot 5^{3} \cdot 11^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:C_4$
Conductor:$117128000= 2^{6} \cdot 5^{3} \cdot 11^{4} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 11 x^{4} - 32 x^{3} + 44 x^{2} - 256 x + 304 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:C_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 22 + 32\cdot 61 + 8\cdot 61^{2} + 45\cdot 61^{3} + 20\cdot 61^{4} + 3\cdot 61^{5} + 15\cdot 61^{6} + 44\cdot 61^{7} + 42\cdot 61^{8} + 39\cdot 61^{9} + 30\cdot 61^{10} + 27\cdot 61^{11} + 4\cdot 61^{12} + 49\cdot 61^{13} +O\left(61^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 47 a + 5 + \left(25 a + 38\right)\cdot 61 + \left(44 a + 38\right)\cdot 61^{2} + \left(54 a + 11\right)\cdot 61^{3} + \left(2 a + 15\right)\cdot 61^{4} + \left(31 a + 46\right)\cdot 61^{5} + \left(60 a + 35\right)\cdot 61^{6} + \left(46 a + 37\right)\cdot 61^{7} + \left(8 a + 32\right)\cdot 61^{8} + \left(34 a + 25\right)\cdot 61^{9} + \left(57 a + 6\right)\cdot 61^{10} + \left(26 a + 6\right)\cdot 61^{11} + \left(19 a + 31\right)\cdot 61^{12} + \left(a + 42\right)\cdot 61^{13} +O\left(61^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 52 + \left(35 a + 16\right)\cdot 61 + \left(16 a + 57\right)\cdot 61^{2} + \left(6 a + 21\right)\cdot 61^{3} + \left(58 a + 24\right)\cdot 61^{4} + \left(29 a + 13\right)\cdot 61^{5} + 4\cdot 61^{6} + \left(14 a + 24\right)\cdot 61^{7} + \left(52 a + 55\right)\cdot 61^{8} + \left(26 a + 50\right)\cdot 61^{9} + \left(3 a + 29\right)\cdot 61^{10} + \left(34 a + 36\right)\cdot 61^{11} + \left(41 a + 23\right)\cdot 61^{12} + \left(59 a + 24\right)\cdot 61^{13} +O\left(61^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 50 + 12\cdot 61 + 26\cdot 61^{2} + 50\cdot 61^{3} + 59\cdot 61^{4} + 6\cdot 61^{5} + 50\cdot 61^{6} + 49\cdot 61^{7} + 52\cdot 61^{8} + 11\cdot 61^{9} + 17\cdot 61^{10} + 18\cdot 61^{11} + 28\cdot 61^{12} + 5\cdot 61^{13} +O\left(61^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 11 a + 22 + \left(6 a + 13\right)\cdot 61 + \left(41 a + 39\right)\cdot 61^{2} + 16\cdot 61^{3} + \left(36 a + 44\right)\cdot 61^{4} + \left(2 a + 42\right)\cdot 61^{5} + \left(55 a + 12\right)\cdot 61^{6} + \left(47 a + 17\right)\cdot 61^{7} + \left(9 a + 49\right)\cdot 61^{8} + \left(42 a + 41\right)\cdot 61^{9} + \left(40 a + 19\right)\cdot 61^{10} + \left(4 a + 4\right)\cdot 61^{11} + \left(7 a + 16\right)\cdot 61^{12} + \left(30 a + 19\right)\cdot 61^{13} +O\left(61^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 50 a + 33 + \left(54 a + 8\right)\cdot 61 + \left(19 a + 13\right)\cdot 61^{2} + \left(60 a + 37\right)\cdot 61^{3} + \left(24 a + 18\right)\cdot 61^{4} + \left(58 a + 9\right)\cdot 61^{5} + \left(5 a + 4\right)\cdot 61^{6} + \left(13 a + 10\right)\cdot 61^{7} + \left(51 a + 11\right)\cdot 61^{8} + \left(18 a + 13\right)\cdot 61^{9} + \left(20 a + 18\right)\cdot 61^{10} + \left(56 a + 29\right)\cdot 61^{11} + \left(53 a + 18\right)\cdot 61^{12} + \left(30 a + 42\right)\cdot 61^{13} +O\left(61^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(4,5,6)$
$(1,2,3)$
$(1,5,2,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$9$ $2$ $(1,2)(4,5)$ $0$
$4$ $3$ $(1,2,3)$ $1$
$4$ $3$ $(1,2,3)(4,5,6)$ $-2$
$9$ $4$ $(1,5,2,4)(3,6)$ $0$
$9$ $4$ $(1,4,2,5)(3,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.