Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 521 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 20 + 449\cdot 521 + 265\cdot 521^{2} + 394\cdot 521^{3} + 354\cdot 521^{4} +O\left(521^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 66 + 273\cdot 521 + 76\cdot 521^{2} + 123\cdot 521^{3} + 480\cdot 521^{4} +O\left(521^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 284 + 355\cdot 521 + 142\cdot 521^{2} + 404\cdot 521^{3} + 191\cdot 521^{4} +O\left(521^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 299 + 190\cdot 521 + 288\cdot 521^{2} + 312\cdot 521^{3} + 264\cdot 521^{4} +O\left(521^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 374 + 294\cdot 521 + 268\cdot 521^{2} + 328\cdot 521^{3} + 271\cdot 521^{4} +O\left(521^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$0$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$1$ |
| $12$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
| $12$ |
$5$ |
$(1,3,4,5,2)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.