Properties

Label 4.2e6_5e2_19.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{6} \cdot 5^{2} \cdot 19 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$30400= 2^{6} \cdot 5^{2} \cdot 19 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 2 x^{4} - 5 x^{3} + 4 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 54 a + 22 + \left(12 a + 33\right)\cdot 59 + \left(23 a + 29\right)\cdot 59^{2} + \left(28 a + 20\right)\cdot 59^{3} + \left(39 a + 38\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 + 50\cdot 59 + 50\cdot 59^{2} + 20\cdot 59^{3} + 9\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 46 + 27\cdot 59 + 15\cdot 59^{2} + 58\cdot 59^{3} + 7\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 a + 17 + \left(46 a + 51\right)\cdot 59 + \left(35 a + 39\right)\cdot 59^{2} + \left(30 a + 25\right)\cdot 59^{3} + \left(19 a + 49\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 a + 26 + \left(5 a + 14\right)\cdot 59 + \left(21 a + 42\right)\cdot 59^{2} + 12 a\cdot 59^{3} + \left(47 a + 48\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 39 a + 46 + \left(53 a + 58\right)\cdot 59 + \left(37 a + 57\right)\cdot 59^{2} + \left(46 a + 50\right)\cdot 59^{3} + \left(11 a + 23\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)$
$(1,2)(3,5)(4,6)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,5)(4,6)$ $0$
$6$ $2$ $(3,4)$ $2$
$9$ $2$ $(3,4)(5,6)$ $0$
$4$ $3$ $(1,3,4)$ $1$
$4$ $3$ $(1,3,4)(2,5,6)$ $-2$
$18$ $4$ $(1,2)(3,6,4,5)$ $0$
$12$ $6$ $(1,5,3,6,4,2)$ $0$
$12$ $6$ $(2,5,6)(3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.