Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 173 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 38 + 92\cdot 173 + 122\cdot 173^{2} + 130\cdot 173^{3} + 51\cdot 173^{4} +O\left(173^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 57 + 110\cdot 173 + 50\cdot 173^{2} + 24\cdot 173^{3} + 162\cdot 173^{4} +O\left(173^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 112 + 133\cdot 173 + 152\cdot 173^{2} + 104\cdot 173^{3} + 88\cdot 173^{4} +O\left(173^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 152 + 127\cdot 173 + 62\cdot 173^{2} + 131\cdot 173^{3} + 153\cdot 173^{4} +O\left(173^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 161 + 54\cdot 173 + 130\cdot 173^{2} + 127\cdot 173^{3} + 62\cdot 173^{4} +O\left(173^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2,3)$ |
| $(3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $0$ |
| $20$ | $3$ | $(1,2,3)$ | $1$ |
| $12$ | $5$ | $(1,2,3,4,5)$ | $-1$ |
| $12$ | $5$ | $(1,3,4,5,2)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.