Properties

Label 4.2e6_5e2_13e2.6t9.1
Dimension 4
Group $S_3^2$
Conductor $ 2^{6} \cdot 5^{2} \cdot 13^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_3^2$
Conductor:$270400= 2^{6} \cdot 5^{2} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 6 x^{4} - 2 x^{3} + 4 x^{2} + 4 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_3^2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 + 20\cdot 37 + 10\cdot 37^{2} + 21\cdot 37^{3} + 4\cdot 37^{4} + 28\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 32 a + 24 + \left(28 a + 23\right)\cdot 37 + \left(8 a + 6\right)\cdot 37^{2} + \left(30 a + 15\right)\cdot 37^{3} + \left(6 a + 19\right)\cdot 37^{4} + \left(3 a + 14\right)\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 4 + \left(8 a + 33\right)\cdot 37 + \left(28 a + 12\right)\cdot 37^{2} + \left(6 a + 16\right)\cdot 37^{3} + \left(30 a + 16\right)\cdot 37^{4} + \left(33 a + 20\right)\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 24 a + 36 + \left(32 a + 26\right)\cdot 37 + \left(24 a + 25\right)\cdot 37^{2} + \left(22 a + 8\right)\cdot 37^{3} + \left(5 a + 10\right)\cdot 37^{4} + \left(21 a + 15\right)\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 12 + 21\cdot 37 + 36\cdot 37^{2} + 11\cdot 37^{3} + 13\cdot 37^{4} + 12\cdot 37^{5} +O\left(37^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 21 + \left(4 a + 22\right)\cdot 37 + \left(12 a + 18\right)\cdot 37^{2} + 14 a\cdot 37^{3} + \left(31 a + 10\right)\cdot 37^{4} + \left(15 a + 20\right)\cdot 37^{5} +O\left(37^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(4,6)$
$(4,5,6)$
$(2,3)(5,6)$
$(1,6,2,5,3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$3$ $2$ $(1,5)(2,4)(3,6)$ $0$
$3$ $2$ $(1,6)(2,4)(3,5)$ $0$
$9$ $2$ $(1,3)(4,6)$ $0$
$2$ $3$ $(1,2,3)(4,6,5)$ $-2$
$2$ $3$ $(1,2,3)(4,5,6)$ $-2$
$4$ $3$ $(4,5,6)$ $1$
$6$ $6$ $(1,6,2,5,3,4)$ $0$
$6$ $6$ $(1,5,2,6,3,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.