Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 4 a + 37 + \left(17 a + 42\right)\cdot 43 + \left(29 a + 11\right)\cdot 43^{2} + 16 a\cdot 43^{3} + \left(2 a + 1\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 5 a + 2 + \left(10 a + 26\right)\cdot 43 + \left(34 a + 12\right)\cdot 43^{2} + \left(12 a + 4\right)\cdot 43^{3} + \left(2 a + 18\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 15 + 37\cdot 43 + 21\cdot 43^{2} + 24\cdot 43^{3} + 4\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 38 a + 7 + \left(32 a + 31\right)\cdot 43 + \left(8 a + 36\right)\cdot 43^{2} + \left(30 a + 25\right)\cdot 43^{3} + \left(40 a + 7\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 39 a + 41 + \left(25 a + 12\right)\cdot 43 + \left(13 a + 24\right)\cdot 43^{2} + \left(26 a + 30\right)\cdot 43^{3} + \left(40 a + 29\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 29 + 21\cdot 43 + 21\cdot 43^{2} + 25\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,4)(3,5)$ |
| $(1,5,4)(2,6,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $15$ | $2$ | $(1,4)(3,5)$ | $0$ |
| $20$ | $3$ | $(1,5,4)(2,6,3)$ | $1$ |
| $12$ | $5$ | $(2,6,3,4,5)$ | $-1$ |
| $12$ | $5$ | $(2,3,5,6,4)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.