Properties

Label 4.2e6_5_29e2.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 2^{6} \cdot 5 \cdot 29^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$269120= 2^{6} \cdot 5 \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{6} + x^{4} - 4 x^{3} - 7 x^{2} - 2 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 17 a + 7 + \left(25 a + 27\right)\cdot 59 + \left(55 a + 8\right)\cdot 59^{2} + \left(48 a + 12\right)\cdot 59^{3} + \left(22 a + 45\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 28 + 55\cdot 59 + 11\cdot 59^{2} + 41\cdot 59^{3} + 53\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 42 a + 24 + \left(33 a + 35\right)\cdot 59 + \left(3 a + 38\right)\cdot 59^{2} + \left(10 a + 5\right)\cdot 59^{3} + \left(36 a + 19\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 51 + 43\cdot 59 + 19\cdot 59^{2} + 52\cdot 59^{3} + 44\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 55 a + 6 + \left(53 a + 8\right)\cdot 59 + \left(23 a + 5\right)\cdot 59^{2} + \left(23 a + 33\right)\cdot 59^{3} + \left(23 a + 36\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 4 a + 2 + \left(5 a + 7\right)\cdot 59 + \left(35 a + 34\right)\cdot 59^{2} + \left(35 a + 32\right)\cdot 59^{3} + \left(35 a + 36\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(4,5,6)$
$(1,4)(2,5)(3,6)$
$(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,4)(2,5)(3,6)$ $0$
$6$ $2$ $(1,2)$ $2$
$9$ $2$ $(1,2)(4,5)$ $0$
$4$ $3$ $(1,2,3)(4,5,6)$ $-2$
$4$ $3$ $(1,2,3)$ $1$
$18$ $4$ $(1,5,2,4)(3,6)$ $0$
$12$ $6$ $(1,5,2,6,3,4)$ $0$
$12$ $6$ $(1,2)(4,5,6)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.