Properties

Label 4.2e6_4337e3.10t12.1
Dimension 4
Group $S_5$
Conductor $ 2^{6} \cdot 4337^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$5220934448192= 2^{6} \cdot 4337^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 2 x^{3} - x^{2} + 2 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 37 + 28\cdot 43 + 29\cdot 43^{2} + 14\cdot 43^{3} + 14\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 7 + \left(14 a + 24\right)\cdot 43 + \left(11 a + 21\right)\cdot 43^{2} + \left(17 a + 37\right)\cdot 43^{3} + \left(19 a + 28\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 34 a + 38 + \left(14 a + 12\right)\cdot 43 + \left(a + 36\right)\cdot 43^{2} + \left(11 a + 11\right)\cdot 43^{3} + \left(33 a + 16\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 31 a + 19 + \left(28 a + 26\right)\cdot 43 + \left(31 a + 18\right)\cdot 43^{2} + 25 a\cdot 43^{3} + \left(23 a + 31\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 29 + \left(28 a + 36\right)\cdot 43 + \left(41 a + 22\right)\cdot 43^{2} + \left(31 a + 21\right)\cdot 43^{3} + \left(9 a + 38\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $-2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.