Properties

Label 4.2e6_41e4.5t4.1
Dimension 4
Group $A_5$
Conductor $ 2^{6} \cdot 41^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$A_5$
Conductor:$180848704= 2^{6} \cdot 41^{4} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 16 x^{3} + 36 x^{2} + 267 x - 319 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 3 + 20\cdot 67 + 55\cdot 67^{2} + 61\cdot 67^{3} + 46\cdot 67^{4} + 56\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 28 + 53\cdot 67 + 47\cdot 67^{2} + 14\cdot 67^{3} + 9\cdot 67^{4} + 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 49 + 62\cdot 67 + 53\cdot 67^{2} + 7\cdot 67^{3} + 11\cdot 67^{4} + 55\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 56 + 21\cdot 67 + 25\cdot 67^{2} + 32\cdot 67^{3} + 11\cdot 67^{4} + 22\cdot 67^{5} +O\left(67^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 66 + 42\cdot 67 + 18\cdot 67^{2} + 17\cdot 67^{3} + 55\cdot 67^{4} + 65\cdot 67^{5} +O\left(67^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$12$ $5$ $(1,2,3,4,5)$ $-1$
$12$ $5$ $(1,3,4,5,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.