Properties

Label 4.2e6_3e4_5e5.10t12.12
Dimension 4
Group $\PGL(2,5)$
Conductor $ 2^{6} \cdot 3^{4} \cdot 5^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PGL(2,5)$
Conductor:$16200000= 2^{6} \cdot 3^{4} \cdot 5^{5} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 6 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 89 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 89 }$: $ x^{2} + 82 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 27 + 84\cdot 89 + 4\cdot 89^{2} + 56\cdot 89^{3} + 86\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 68 a + 36 + \left(34 a + 42\right)\cdot 89 + \left(79 a + 39\right)\cdot 89^{2} + \left(11 a + 5\right)\cdot 89^{3} + \left(52 a + 7\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 60 a + 18 + \left(16 a + 8\right)\cdot 89 + \left(66 a + 73\right)\cdot 89^{2} + \left(54 a + 60\right)\cdot 89^{3} + \left(47 a + 5\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 39 + 27\cdot 89 + 48\cdot 89^{2} + 24\cdot 89^{3} + 57\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 67 + \left(54 a + 39\right)\cdot 89 + \left(9 a + 26\right)\cdot 89^{2} + \left(77 a + 9\right)\cdot 89^{3} + \left(36 a + 4\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 29 a + 82 + \left(72 a + 64\right)\cdot 89 + \left(22 a + 74\right)\cdot 89^{2} + \left(34 a + 21\right)\cdot 89^{3} + \left(41 a + 17\right)\cdot 89^{4} +O\left(89^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,2,4,5,6)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)(3,6)(4,5)$ $-2$
$15$ $2$ $(1,4)(2,5)$ $0$
$20$ $3$ $(1,5,2)(3,6,4)$ $1$
$30$ $4$ $(2,6,4,5)$ $0$
$24$ $5$ $(1,4,6,2,3)$ $-1$
$20$ $6$ $(1,6,5,4,2,3)$ $1$
The blue line marks the conjugacy class containing complex conjugation.