Properties

Label 4.2e6_3e4_5e4.8t23.2c1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{6} \cdot 3^{4} \cdot 5^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$3240000= 2^{6} \cdot 3^{4} \cdot 5^{4} $
Artin number field: Splitting field of $f= x^{8} - 4 x^{7} + 4 x^{6} + 2 x^{5} + 4 x^{4} + 14 x^{3} - 24 x^{2} - 72 x - 39 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 13 + 11\cdot 17 + 8\cdot 17^{2} + 10\cdot 17^{3} + 13\cdot 17^{4} + 9\cdot 17^{5} + 11\cdot 17^{6} + 15\cdot 17^{7} + 10\cdot 17^{8} + 14\cdot 17^{9} + 2\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 2 + \left(7 a + 11\right)\cdot 17 + \left(2 a + 1\right)\cdot 17^{2} + \left(10 a + 8\right)\cdot 17^{3} + \left(6 a + 2\right)\cdot 17^{4} + \left(8 a + 9\right)\cdot 17^{5} + \left(7 a + 1\right)\cdot 17^{6} + \left(3 a + 13\right)\cdot 17^{7} + \left(7 a + 9\right)\cdot 17^{8} + \left(8 a + 13\right)\cdot 17^{9} + \left(14 a + 9\right)\cdot 17^{10} + \left(6 a + 14\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 11 + \left(6 a + 9\right)\cdot 17 + \left(4 a + 6\right)\cdot 17^{2} + \left(15 a + 9\right)\cdot 17^{3} + \left(5 a + 5\right)\cdot 17^{4} + \left(7 a + 1\right)\cdot 17^{5} + \left(10 a + 8\right)\cdot 17^{6} + \left(12 a + 16\right)\cdot 17^{7} + \left(4 a + 16\right)\cdot 17^{8} + \left(15 a + 12\right)\cdot 17^{9} + \left(10 a + 14\right)\cdot 17^{10} + \left(14 a + 9\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 14 + 12\cdot 17 + 8\cdot 17^{2} + 9\cdot 17^{3} + 11\cdot 17^{4} + 15\cdot 17^{5} + 7\cdot 17^{6} + 10\cdot 17^{7} + 9\cdot 17^{8} + 13\cdot 17^{9} + 2\cdot 17^{10} + 4\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 5 a + 14 + \left(9 a + 6\right)\cdot 17 + \left(14 a + 13\right)\cdot 17^{2} + \left(6 a + 15\right)\cdot 17^{3} + \left(10 a + 15\right)\cdot 17^{4} + \left(8 a + 10\right)\cdot 17^{5} + 9 a\cdot 17^{6} + \left(13 a + 9\right)\cdot 17^{7} + \left(9 a + 13\right)\cdot 17^{8} + \left(8 a + 14\right)\cdot 17^{9} + \left(2 a + 15\right)\cdot 17^{10} + \left(10 a + 6\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 12 a + \left(14 a + 13\right)\cdot 17 + \left(9 a + 14\right)\cdot 17^{2} + \left(a + 9\right)\cdot 17^{3} + 6 a\cdot 17^{4} + \left(15 a + 13\right)\cdot 17^{5} + \left(5 a + 9\right)\cdot 17^{6} + \left(13 a + 5\right)\cdot 17^{7} + \left(4 a + 3\right)\cdot 17^{8} + \left(14 a + 8\right)\cdot 17^{9} + \left(16 a + 5\right)\cdot 17^{10} + \left(12 a + 10\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 7 }$ $=$ $ 5 a + 12 + \left(2 a + 15\right)\cdot 17 + \left(7 a + 9\right)\cdot 17^{2} + \left(15 a + 1\right)\cdot 17^{3} + \left(10 a + 5\right)\cdot 17^{4} + \left(a + 5\right)\cdot 17^{5} + 11 a\cdot 17^{6} + \left(3 a + 13\right)\cdot 17^{7} + \left(12 a + 11\right)\cdot 17^{8} + 2 a\cdot 17^{9} + 8\cdot 17^{10} + \left(4 a + 6\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 8 }$ $=$ $ 5 a + 6 + \left(10 a + 4\right)\cdot 17 + \left(12 a + 4\right)\cdot 17^{2} + \left(a + 3\right)\cdot 17^{3} + \left(11 a + 13\right)\cdot 17^{4} + \left(9 a + 2\right)\cdot 17^{5} + \left(6 a + 11\right)\cdot 17^{6} + \left(4 a + 1\right)\cdot 17^{7} + \left(12 a + 9\right)\cdot 17^{8} + \left(a + 6\right)\cdot 17^{9} + \left(6 a + 10\right)\cdot 17^{10} + \left(2 a + 13\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,8,6)(3,5,7)$
$(1,7,4,2)(3,5,8,6)$
$(2,5)(3,8)(6,7)$
$(1,4)(2,7)(3,8)(5,6)$
$(1,8,4,3)(2,6,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,4)(2,7)(3,8)(5,6)$$-4$
$12$$2$$(2,5)(3,8)(6,7)$$0$
$8$$3$$(1,6,3)(4,5,8)$$1$
$6$$4$$(1,8,4,3)(2,6,7,5)$$0$
$8$$6$$(1,7,5,4,2,6)(3,8)$$-1$
$6$$8$$(1,7,3,6,4,2,8,5)$$0$
$6$$8$$(1,2,3,5,4,7,8,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.