Properties

Label 4.2e6_3e4_5e2.8t23.2c1
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 2^{6} \cdot 3^{4} \cdot 5^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$129600= 2^{6} \cdot 3^{4} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 6 x^{6} + 12 x^{4} - 6 x^{3} - 6 x^{2} + 18 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 29 a + 26 + \left(32 a + 9\right)\cdot 41 + \left(21 a + 30\right)\cdot 41^{2} + \left(7 a + 11\right)\cdot 41^{3} + \left(18 a + 7\right)\cdot 41^{4} + \left(27 a + 35\right)\cdot 41^{5} + \left(19 a + 22\right)\cdot 41^{6} + \left(9 a + 37\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 11 + 17\cdot 41 + 10\cdot 41^{2} + 37\cdot 41^{3} + 36\cdot 41^{4} + 19\cdot 41^{5} + 26\cdot 41^{6} + 23\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 31 + \left(8 a + 37\right)\cdot 41 + \left(19 a + 21\right)\cdot 41^{2} + \left(33 a + 12\right)\cdot 41^{3} + \left(22 a + 13\right)\cdot 41^{4} + \left(13 a + 17\right)\cdot 41^{5} + \left(21 a + 13\right)\cdot 41^{6} + \left(31 a + 5\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 31 + 34\cdot 41 + 25\cdot 41^{2} + 36\cdot 41^{3} + 24\cdot 41^{4} + 40\cdot 41^{5} + 36\cdot 41^{6} + 5\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 34 a + 9 + \left(7 a + 14\right)\cdot 41 + \left(25 a + 32\right)\cdot 41^{2} + \left(33 a + 24\right)\cdot 41^{3} + \left(7 a + 10\right)\cdot 41^{4} + \left(20 a + 10\right)\cdot 41^{5} + 21\cdot 41^{6} + \left(21 a + 12\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 28 a + 33 + \left(32 a + 8\right)\cdot 41 + \left(12 a + 30\right)\cdot 41^{2} + \left(2 a + 34\right)\cdot 41^{3} + \left(19 a + 7\right)\cdot 41^{4} + \left(a + 37\right)\cdot 41^{5} + \left(36 a + 7\right)\cdot 41^{6} + \left(18 a + 12\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 7 a + 29 + \left(33 a + 3\right)\cdot 41 + \left(15 a + 18\right)\cdot 41^{2} + \left(7 a + 18\right)\cdot 41^{3} + 33 a\cdot 41^{4} + \left(20 a + 22\right)\cdot 41^{5} + \left(40 a + 2\right)\cdot 41^{6} + \left(19 a + 34\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 13 a + 35 + \left(8 a + 37\right)\cdot 41 + \left(28 a + 35\right)\cdot 41^{2} + \left(38 a + 28\right)\cdot 41^{3} + \left(21 a + 21\right)\cdot 41^{4} + \left(39 a + 22\right)\cdot 41^{5} + \left(4 a + 32\right)\cdot 41^{6} + \left(22 a + 32\right)\cdot 41^{7} +O\left(41^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4,3)(2,5,7)$
$(1,7)(2,4)(3,5)(6,8)$
$(1,4,7,2)(3,6,5,8)$
$(1,3,7,5)(2,6,4,8)$
$(1,2)(3,5)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,7)(2,4)(3,5)(6,8)$$-4$
$12$$2$$(1,2)(3,5)(4,7)$$0$
$8$$3$$(1,8,2)(4,7,6)$$1$
$6$$4$$(1,3,7,5)(2,6,4,8)$$0$
$8$$6$$(1,4,8,7,2,6)(3,5)$$-1$
$6$$8$$(1,5,2,6,7,3,4,8)$$0$
$6$$8$$(1,3,2,8,7,5,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.