Properties

Label 4.2e6_3e4_5e2.8t15.2
Dimension 4
Group $Z_8 : Z_8^\times$
Conductor $ 2^{6} \cdot 3^{4} \cdot 5^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$Z_8 : Z_8^\times$
Conductor:$129600= 2^{6} \cdot 3^{4} \cdot 5^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} + x^{6} + 4 x^{5} - 5 x^{4} + 4 x^{3} + x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $Z_8 : Z_8^\times$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 379 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 268\cdot 379 + 13\cdot 379^{2} + 239\cdot 379^{3} + 191\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 22 + 190\cdot 379 + 22\cdot 379^{2} + 238\cdot 379^{3} + 73\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 43 + 330\cdot 379 + 86\cdot 379^{2} + 27\cdot 379^{3} + 22\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 60 + 106\cdot 379 + 260\cdot 379^{2} + 271\cdot 379^{3} + 9\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 224 + 46\cdot 379 + 321\cdot 379^{2} + 217\cdot 379^{3} + 219\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 238 + 156\cdot 379 + 243\cdot 379^{2} + 66\cdot 379^{3} + 271\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 259 + 205\cdot 379 + 314\cdot 379^{2} + 48\cdot 379^{3} + 261\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 8 }$ $=$ $ 278 + 212\cdot 379 + 253\cdot 379^{2} + 27\cdot 379^{3} + 88\cdot 379^{4} +O\left(379^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,4,5,8,6,7,2)$
$(1,6)(2,7)(3,8)(4,5)$
$(2,5)(3,6)$
$(1,4,8,7)(2,6,5,3)$
$(1,8)(2,5)(3,6)(4,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,8)(2,5)(3,6)(4,7)$ $-4$
$2$ $2$ $(2,5)(3,6)$ $0$
$4$ $2$ $(1,8)(2,6)(3,5)$ $0$
$4$ $2$ $(1,6)(2,7)(3,8)(4,5)$ $0$
$4$ $2$ $(1,7)(2,5)(4,8)$ $0$
$2$ $4$ $(1,4,8,7)(2,3,5,6)$ $0$
$2$ $4$ $(1,4,8,7)(2,6,5,3)$ $0$
$4$ $4$ $(1,3,8,6)(2,7,5,4)$ $0$
$4$ $8$ $(1,3,4,5,8,6,7,2)$ $0$
$4$ $8$ $(1,6,7,5,8,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.